

Challenge the future

HrBasic
Reference Manual

Ver. 5.50

HD-XXXX-1

The information contained herein is the property of Hirata Corporation and shall not be
reproduced in whole or in part without prior written approval of Hirata Corporation. The
information contained herein is subject to change without notice and should not be constructed as
a commitment by Hirata Corporation.

Hirata Corporation assumes no responsibility for any errors or omissions in this document.

Warranty

All of Hirata's products which are passed our formal inspection test shall be guaranteed against
faults due to the negligence of Hirata for either earlier period of one year or four thousand hours
of operation from the day of shipment from Hirata Factory.

This warranty shall be applicable to the parts replacement and/or labor for repair in our factory
and transportation cost shall not be applied.

We will charge the repair of faults caused by the following reasons:

* Wrong usage which is prohibited in the instruction manual.
* After the expiration of guarantee period.
* Earthquake, fire, riot, violence, war and other force majeure.
* Modification, repair or adjustment is performed by unauthorized person.

Contact your sales agent for individual warranty coverage.

HrBasic Reference Manual

Ver. 5.50
USER'S GUIDE (HD-XXXXE-1)

Copyright 2004-2005 by Hirata Corporation All right reserved.

First published in January 2005
Printed in Japan
Hirata Corporation

Tokyo Head Quarters
3-9-20 Togoshi, Shinagawa, Tokyo 142-0041 JAPAN
Phone (03) 3786-1226
Facsimile (03) 3786-1264

Robotics Division
1016-6 Kusuno, Kumamoto 861-5511 JAPAN
Phone (096) 245-1333
Facsimile (096) 245-0816

1 Introduction

 1-1

1. Introduction

1.1 Hirata Robot System
• HNC and HAC

There are mainly two kinds of controllers named as “HNC” and
“HAC” produced by Hirata Corporation.
A HNC (Hirata Numerical Controller) can control a Hirata robot
servo system by the instructions using remote I/O or communication.
A HAC (Hirata Assembly Controller) is programmable by HrBasic
language in addition to HNC functions. A HrBasic execution
component of HAC is named as “STP”. Therefore, functionally, HAC
= HNC + STP.

• STP and WinSTP
STP (STation Processor) is the software that can execute the
program developed by robot control language HrBasic.
A standard HAC-8XX controller is equipped with STP. After the
HrBasic program developed on a PC is downloaded to STP, STP
interprets and executes HrBasic program.
WinSTP is STP that runs on a Windows PC. WinSTP is one of
software components of HBDE and it can execute the HrBasic
program on a PC.

• HrBasic
HrBasic is the language based on BASIC to learn easily that
includes the extended statements for robot control, I/O control and
timer control and that can run as maximum 32 jobs simultaneously.
You can develop and debug the HrBasic program on a Windows PC
using HBDE.

• HBDE
HBDE (HrBasic Developing Environment) is the integrated
developing software for a robot control system using HrBasic on a
Windows PC. You can operate and manage projects, developing
programs, compiling, linking, downloading to STP, debugging,
monitoring I/O, robot setting data.

1 Introduction

 1-2

1.2 HrBasic and STP
This manual describes the programming language HrBasic which runs in STP.
STP controls a Hirata robot system or various peripheral devices with
communication of RS232C, internal bus or fieldbus and Ethernet network.
HrBasic can operate global variables, various control memories and timer. And
it can communicate easily with PC, robots and deices through the file system
architecture.

The control memories are categorized to two types which are STP memories
and robot memories.
The STP memories include the followings.

• General memory
• I/O memory
• Temporary position memory

The program can access the connected robot information such as the followings.
• Current robot position
• Teaching position data
• Robot Status

STP
RS232C/Internal bus

RS232C/Internal bus

RS232C/Internal bus
Fieldbus
Ethernet Control memories

 STP memory
 General memory: MB, MD, MW, ML
 I/O memory: INB, IND, OUTB, OUBD
 Position memory: P [PX, PY, PZ, PW, PR, PC, ARM]
 Robot memory
 Position data
 Position: Pm
 M data: Mm
 Speed data: Fm
 S code: Sm
 General memory: MRB, MRD
 I/O memory: ORB, ORD, IRB, IRD
 Status: STATUS
 Current position: HERE
Timer
Global variables

Hirata
robot #1

Other
devices

Hirata
robot #2

1 Introduction

 1-3

1.3 Example of Robot System

Using HAC-8XX

Upper System Robot I/O Device

Other Device
STP

Robot I/O Device

Other Device
STP

Field-bus
Ethernet
RS232C

Field-bus

Field-bus
Ethernet
RS232C

HBDE

RS232C
Ethernet

Ethernet
RS232C

HAC-8XX

Developing PC

Using WinSTP

Upper System Robot

Robot

Other Device

WinSTP

RS232C
Ethernet

Ethernet
RS232C

Field-bus I/O Device

Field-bus
Ethernet
RS232C

HBDE

Windows PC

2 Program Developing/Running Environment

 2-1

2. Program Developing/Running Environment

2.1 System Structure
The following figure shows the system structure of HrBasic developing or
running environment.
HrBasic can be executed on the following platforms

• STP in HAC-8XX
• WinSTP

Other devices

STP

HNC

 HNC

HDBE

WinSTP

I/O devices

HAC-8XX series
Robot controller

Other Hirata
robot controller

Other devices

I/O devices

I/O for robot hands

I/O for robot hands

Windows PC

(1) HBDE --- HrBasic Developing Environment
HBDE provides the environment to develop HrBasic program and to
maintenance the robot system and the program. HBDE works on the
Windows PC.
The following functions are available by HBDE.

• Project management of HrBasic program

• Editing of HrBasic program

• Compiling and linking of HrBasic program

• Downloading or uploading of HrBasic program

2 Program Developing/Running Environment

 2-2

• Debugging of HrBasic program

• Maintenance tool of HrBasic program

(2) STP/WinSTP --- Execution engine of HrBasic program
STP (Station Processor) is the environment that executes HrBasic
programs.

• HAC-8XX/STP
STP is equipped normally in HAC-8XX series.

• WinSTP
WinSTP is the STP for Windows that can execute HrBasic on a
Windows PC.

2 Program Developing/Running Environment

 2-3

2.2 Software Components of HBDE
The following figure shows the software components and structure of HBDE.

Windows PC

HAC-8XX

Ethernet
RS232C

Main Menu

ToolsProject Management

HrBasic Editor WinSTP Console
HR Editor

Simulator
(Future)

WinSTPCompiler and Linker

Debugger

HNC STP

Robot

I/O Device Field-bus

Ethernet
RS232C

HR Editor
can manage
the robot
setting data.

2 Program Developing/Running Environment

 2-4

2.3 Specifications

2.3.1 STP Hardware Specifications
Item HAC-8XX/STP WinSTP

Microprocessor Hitachi SH-4 (240MHz)
Arithmetic co-processor Built-in co-processor on SH-4
Memory Flash memory : 4MB

SDRAM : 64 MB
SRAM : 2MB (battery-backup)

According to using PC specification
Recommended)
CPU: above 200MHz
Memory: above 64MB
HDD: more than 40MB free space
OS: Windows95/98/Me/NT4.0/2000/XP

Serial communication 8 ports for standard
(PC104 extension(furture))
Baud rate : 115200 bps max.

PC COM1-COM9 available
Note) Standard PC has only COM1 or
COM2. PCI board or USB device of
serial COM is needed for extension.

Real-time clock Built-in calendar and timer on SH-4
Battery-backup

Windows timer and calendar

Precision of timer 1 msec 1 msec
Remote I/O PC104 extension board (Hilscher

GmbH)
InterBus Master, Slave
PROFIBUS Master, Slave
DeviceNet Master, Slave
In : 256 bits (max. 4096 bits)
Out : 256 bits (max. 4096 bits)

PCI board (Hilscher GmbH)
InterBus Master, Slave
PROFIBUS Master, Slave
DeviceNet Master, Slave
In : 256 bits (max. 4096 bits)
Out : 256 bits (max. 4096 bits)

Ethernet 10BASE-T * 1 According to using PC specification
Other interfaces Compact flash card VB, VC++ application interface

MITSUBISHI MELSEC board interface
Monitor on board 7 segments LED
Size 200 mm * 100 mm * 2 boards (CPU and

extension interface board)

2.3.2 STP Execution Time i
Item HAC-8XX/STP (*1) WinSTP (CPU:533Mhz)

One step execution interval of HrBasic Average 0.050msec Average 0.050msec
Max. interruption time by operating system About 1msec About 6 to 10msec

(*1) Using real-time operating system "Micro-C OS"

i Note: The value changes according to the running environment.

2 Program Developing/Running Environment

 2-5

2.3.3 HrBasic Specifications
Item Specification

Job Max. 32 jobs running simultaneously
Max. program area 1MB (about 45000 to 57000 steps of all jobs)
Max. variable area 1MB
Max. position data memory 8000 points
MD memory (general purpose,
battery-backup, byte memory)

1024 bytes

MW memory (general purpose,
battery-backup, word memory)

16384 words

ML memory (general purpose,
battery-backup, long word
memory)

1024 long words

I/O In : 256 bits (Max. 4096 bits)
Out : 256 bits (Max. 4096 bits)

Available user timer 32 timers (Min. scale 1msec)
Available variable type String, Integer, Long, Single float, Double float

2.3.4 HrBasic Statements and Functions
Kind Usage Description Function

Definition Define Define the specified name as a constant.
Macro Macro Define a format of macro call.

Pre-Processor

Header file Include Read the specified header file.
Dim Define as array variable.
DimNet Define as network global variable
Global Define as global variable.
DimPos Define the number of position memory.

Definition

Rem Define the comment line.
GoTo Jump to a specified line, then execute.
GoSub Call subroutine.
Return Terminate subroutine, then resume the former

process.
For - Next Repeat the instruction between For and Next.
If Then Else Decide the condition of logical expression.
Delay Break temporarily the execution of job.
Wait Wait until conditions are satisfied.
TimeOut Get the result of timeout by Wait command.
On GoTo Jump one of specified step.
On GoSub Call one of specified subroutines.
Select Case Evaluate an expression and execute the

processing block.

Definable
instruction

Flow control

InitGoSub Initialize the subroutine-call stack.
On Error GoTo Specify the destination at error.
Resume Terminate error process, then resume the

former process.

Interrupt
control
instruction

Error control

Err Hold error code.
Job Start
Job On
Job Off

Control job execution.

GetPriority Get the running priority of the current job.

Job control

SetPriority Set the running priority of the current job.
Move Move a robot to specified coordinates.
Set Set operating characteristic data of a robot.
Ref Deal data inside of a robot.
Seq - SeqEnd Set or terminate robot sequence mode.
Finish Complete MOVE in sequence mode.
Hold Specify or cancel the servo lock of the robot.
Disable Inhibit robot movement.

Control
instruction

Robot control

Enable Allow robot movement

2 Program Developing/Running Environment

 2-6

Kind Usage Description Function
Calib Execute automatic origin calibration.
SetRobNo Set a robot number for the current job.
ClearRobNo Clear the robot number for the current job.
GetRobNo Get the robot number for the current job.
EnableOnlineErr Enable robot ONLINE mode check.
DisableOnlineErr Disable robot ONLINE mode check.
RobCheckBpZone Check robot position within BP/ZONE.
RobCheckCurPos Check robot position nearby teaching data.
RobCheckStop Check robot stopped.
RobClearErr Clear robot errors.
RobSetPosRange Define allowable margin of position.
Inching Execute inching motion.
AxesPara Make axes parameter.
PosRec Make one robot position record.
CollisionCheck Enable or disable collision check between robots.
RobWorldPos Get current robot position in the world

coordinates system.
RobDistance Get the distance between two robots.
RobGetCurSpeed Get the current robot speed.
RobGetCurTorq Get the current robot torque.
RobGetCurAveTorq Get the current effective torque of a robot.
RobGetCurPos Get the current encoder position of a robot.
RobReadSvoPara Read servo parameter of a robot.
RobWriteSvoPara Write servo parameter of a robot.
RobReadSG Read system generation data of a robot.
RobWriteSG Write system generation data of a robot.
Open Open a communication file.
Close Close a file.
Input$ Read the specified length of the string from a

file.
Input # Substitute data of a sequential file to a variable.
Line Input # Read one line from a sequential file.
Print # Output data to a file.
Eof Examine the termination code of a file.
FreeFile Get unused file number.
RchkHrcs Check a HRCS protocol frame received.
ReadHrcs Read a HRCS protocol frame.
WriteHrcs Write a HRCS protocol frame.
EnableDSRCheck Enable DSR signal check of RS232C.
DisableDSRCheck Disable DSR signal check of RS232C.
EnableRTSAuto Enable automatic RTS signal control of RS232C.
DisableRTSAuto Disable automatic RTS signal control of

RS232C.
ComFunction Control RS232C signal.

File control

GetComStatus Get signal status of RS232C.
Pulse
generation

Pulse Generate pulse. (Substitute a value for the
specified period.)

Time$ Get or set the current system time. Clock control
Date$ Get or set the current system date.
NetOpen Open a network communication.
NetClose Close a network communication.
NetRead Read data from a network communication.

Network
instruction

Network
communicati
on

NetWrite Write data from a network communication.
Sin Get sine.
Cos Get cosine.
Tan Get tangent.
Atn Get arctangent.
Sgn Get the sign of value.
Abs Get absolute value.
Int Remove decimals
Fix Remove decimals

Conversion
instruction

Arithmetic
function

Log Get natural logarithms.

2 Program Developing/Running Environment

 2-7

Kind Usage Description Function
Exp Get e raised to a power.
Sqr Get square root.
Mod Execute arithmetic division and get the

remainder.
Not Execute negation.
And Execute logical multiplication.
Or Execute logical addition.
Xor Execute exclusive logical addition.
Eqv Execute logical equivalence.

Operator

Imp Execute logical implication.
Arithmetic
Constant

Pai Get the value of pi.

Left$ Pick out arbitrary length from the left of a
string.

Mid$ Specify one part of a string.
Right$ Pick out arbitrary length from the right of a

string.
Space$ Get a string with the arbitrary length blank.
Chr$ Get the character of specified character code.
String$ Get the character string connected one arbitrary

character.
Hex$ Get the character string converted decimal into

hexadecimal.
Str$ Convert numerical value into a string.
Val Convert the number of a character string into

actual value.
Asc Get the character codes of characters.
Len Get the length of a string.
InStr Get the first position of the string in another

string.
ScanStr Scan string data according to specified format.

And get the value as parameter from string by
operator in the format.

Character

PrintStr Print string data according to specified format.
And put the data string of specified parameter
by operator in the format.

Initialization Operation of
position
memory in
STP

InitPos Initialize position memory in STP.

ConsoleMsgOn Enable to print message to STP console.
ConsoleMsgOff Disable to print message to STP console.

Message Print to STP
console

ConsoleMsg Print specified message to STP console.

3 Program Development Guideline

 3-1

3. Program Development Guideline
The development process of the HrBasic program is overviewed below.

(1) Design the functions of the system.
The output is

• System functional specifications

(2) Design the interface for the peripheral equipment if necessary.
The output is

• Interface specifications

(3) Design the program specifications.
Design the following assignments.

• MB/MD/MW/ML memory assignments
• I/O assignments
• Timer assignments
• Robot position assignments

Design the jobi structure of the system. The output is
• Job structure diagram

Note)
The volume, maintenancebility and quality of a HrBasic program
depend on how to design job components by dividing the system
functions to HrBasic jobs. The guideline of this is described later.

Design the system state flow if necessary. The output is
• State flow diagram

Design the process flow of jobs. The output is
• Job flow diagram

(4) Create program header files.
Define the following assignments to header files.

• MB/MD/MW/ML memory assignments
• I/O assignments
• Timer assignments
• Robot position assignments

(5) Create source program files.
Program the procedure of each job according to the program
specifications.

(6) Debug the program on the target system.
Using HBDE, download the program to the target system and then check
that the all functions described in the functional specifications work
without a problem.
If the program has a bug, refine the program and check again.

This chapter describes the above-mentioned developing process with a sample
system.

i A job is the HrBasic program component that STP executes concurrently. See Chapter 4 about
details.

3 Program Development Guideline

 3-2

3.1 Functional Specifications
The functional specifications of the sample system are shown below.

(1) System configuration

• Operation Panel

A Manual button, Ready button and a Start button are
implemented.

• PC
PC monitors the running state and statistics of the system. The
displaying items are Operation Mode, Total Running Time, Total
Stopping Time, Cycle Time and Cycle Counts.
Total Running Time means the sum of the Running mode time.
Total Stopping Time means the sum of the time except the Running
mode. Cycle Time means that the time during the motion; point A ->
point B -> point A. Cycle Counts means the number of the motions;
point A -> point B -> point A. Point A and B are described later.

• Signal Tower
A blue lamp, red lamp and a buzzer are implemented.

(2) Operation and motion specifications

• After the power-on, the system starts in Manual mode. Manual
mode accepts only a Ready button.

• To press a Ready button, the system is transferred to Ready mode
and then a robot moves to the origin position. Ready mode accepts a
Start button and a Manual button.

• To press a Start button in Ready mode, the system is transferred to
Running mode and then a robot repeats to goes to the point B and
back to the point A. The point A is the position to pick a part and
the point B is the position to place it, but the sample program omits
the motion to pick and place. Running mode accepts only a Manual
button.

• In Ready mode or Running mode, to press a Manual button, the
system is transferred to Manual mode and a robot stops
immediately.

HAC-8XX

Signal Tower and Buzzer

Operation
Panel

Remote I/O

Remote I/O

PC

RS232C

External
Equipment Remote I/O Error signal

3 Program Development Guideline

 3-3

• In Ready mode or Running mode, a error signal becomes high, the
system is transferred to Error mode and then a robot stops
immediately. Error mode accepts only a Manual button.

(3) Signal tower and buzzer

• Manual mode
A blue lamp is blinked and other lamp is off.

• Ready mode
A blue lamp is blinked and other lamp is off.

• Running mode
A blue lamp is lighted and other lamp is off.

• Error mode
A red lamp is lighted and other lamp is off. A buzzer makes sound.

3.2 Interface Specifications
The sample system has the following interface specifications for PC.

• PC reads ML memory in HAC/STP and displays the value of the
memory.

• See “ML memory assignment” about the items to display.
Note)

The PC application can access ML memory to use our software “Hirata
Robot System Interface Library”.

3 Program Development Guideline

 3-4

3.3 Program Design Specifications
(1) MB/MD/MW/ML memory assignments

The sample system uses only ML memory.
The ML memory assignments of the sample system are shown below.

ML memory assignment
No Name Explanation Set Reset Note

0 Not used
1 ML.MODE Operation mode

=0: Manual mode
=10: Ready mode
=11: Running mode
=12: Error mode

HAC HAC

2 Not used
3 ML.RUN.TIME Total running time (sec) HAC PC Sum of Running

mode time
1sec = 1

4 ML.STOP.TIME Total stopping time (sec) HAC PC Sum of time
except Running
mode
1sec = 1

5 ML.CYCLE.TIME Cycle time (msec) HAC HAC 1s = 1000
6 ML.COUNT Number of cycles HAC PC

“No” --- Index number of ML memory
“Name” --- Name defined in header file
“Explanation” --- Explanation of content and value
“Set” --- Equipment to set value; “HAC” or “PC”
“Reset” --- Equipment to reset or clear value; “HAC” or “PC”

(2) I/O assignments
The I/O assignments of the sample system are shown below.

Input assignments
Byte
No

Bit
No

Name Explanation Note

0 Not used
1 I.READY Ready button
2 I.START Start button
3 I.MANUAL Manual button
4 I.ERROR Error
5 Not used
6 Not used

0

7 Not used
8 Not used
9 Not used

10 Not used
11 Not used
12 Not used
13 Not used
14 Not used

1

15 Not used

Output assignments

3 Program Development Guideline

 3-5

Byte
No

Bit
No

Name Explanation Note

0 Not used
1 O.BLUE Signal tower: blue lamp
2 O.RED Signal tower: red lamp
3 Not used
4 Not used
5 O.BUZZER Buzzer
6 Not used

0

7 Not used
8 Not used
9 Not used

10 Not used
11 Not used
12 Not used
13 Not used
14 Not used

1

15 Not used
“Byte No” --- Index number of I/O area as byte blocks
“Bit No” --- I/O bit number
“Name” --- Name defined in header file
“Explanation” --- Explanation of meaning and value

(3) Timer assignments
The timer assignments of the sample system are shown below.

No Name Explanation Note
0 Not used
1 TIM.STOP Timer for stopping time
2 Not used
3 TIM.CYCLE Timer for cycle time and running time

“No” --- Index number of TIM variable
“Name” --- Name defined in header file
“Explanation” --- Explanation of meaning and value

(4) Robot position assignments
The robot position assignments of the sample system are shown below.

No Name Explanation Note
0 Not used
1 PM.ORIGIN Origin position

2-99 Not used
100 PM.PICK Point A to pick
101 PM.PLACE Point B to place

“No” --- Index number of PM variable to access teaching position
“Name” --- Name defined in header file
“Explanation” --- Explanation of meaning and value

(5) Job structure
See “3.4 Job Component Structure”.

(6) State flow diagram
The state flow of the sample system is shown below.

3 Program Development Guideline

 3-6

Power ON

Ready

Running

Manual

Error

Ready
button Manual

button
Manual
button

Manual
button Error

input

Error
inputStart

button

3 Program Development Guideline

 3-7

3.4 Job Structure
Total 32 jobs are available in a HrBasic program. The job structure is very
important because it determines what functions a job executes in the system.
And it influences the volume, maintenancebility and quality of the HrBasic
program.
The guideline to decide the job structure is shown below.

< Guideline of Job Structure >
For the purpose of reusing a job program, the job structure has to be
hierarchical. The hierarchical structure realizes the software packaging and
the combination of the packaged programs can be applied to the various system
easily.

Management Layer
This layer job manages the whole motion process of the system. A main job of
motion controls instructs an abstract composite operation, such as “Move and
pick an object at point A” or “Move and place an object at point B”, to a control
layer job. And this layer includes system initialization, mode management,
error management, upper system interface, system diagnostics and data
management.
Control Layer
Generally, this layer job always waits for an instruction from a management
layer job. If an instruction of an abstract composite operation is received, a job
resolves the instruction into more primitive operations, such as “Move to point
A”, “Grip an object”, “Move to point B” or “Release an object”, and then instructs
primitive operations to a driver layer job. When the execution of instructions is
finished, this layer job returns a result to a management layer job.
Driver Layer
Generally, this layer job always waits for an instruction from a control layer
job. If an instruction of a primitive operation is received, a job controls a device
with the dependence of hardware. When the control is finished, this layer job
returns a result to a control layer job. For example, if an instruction “Move to
point A” is received, a job controls a motor driver with the communication, and
returns a motion result after the control is finished.

To adopt this structure, for example, in case that device hardware is changed
with the same control, the exchange of only the driver layer job applies the new
system. Moreover, the stock of packaged programs in control layer and driver
layer results in rapid development of various systems by the combination of the
packages.

Management Layer

Control Layer

Driver Layer

HAC/STP

Robot I/O External
Device

Upper System

!
Guideline for
Programming

3 Program Development Guideline

 3-8

The sample program contains the following six jobs.

(1) Init --- Management layer
The job initializes the system. During the initialization, the job inhibits
other jobs from running.

(2) Mode --- Management layer
The job watches input signals and change operation mode.

(3) Main --- Management layer
The job is the main process which controls the whole motion of the
system. According to the current operation mode, the job instructs
operations to Robot job, Tower job and Buzzer job.

(4) Robot --- Control layer
As the received instruction, the job controls the robot motion to move an
object.
Note)

There is not a job in driver layer for robot control because the driver
software is embedded in the operating system of HAC.

(5) Tower --- Driver layer
As the received instruction, the job controls the lamps on the signal
tower.

(6) Buzzer --- Driver layer
As the received instruction, the job controls the buzzer.

The job structure diagram of the sample system is shown below.

System
Initialization

“Init”

Mode
Management

“Mode”

Main
Control

Robot
Control

“Main”

“Robot”

Signal Tower
Control
“Tower”

Buzzer
Control

“Buzzer”

ML Memeory Interface

PC

Robot Signal Tower Buzzer

Management
Layer

Control
Layer

Driver
Layer

3 Program Development Guideline

 3-9

3.5 Header File
< Importance of Using Header File >
To define various constants in a header file with centralization, the only
modification of the header file and recompiling the program can change the
system easily. This programming method reduces the cost of program
modification and prevents the decrement of the program quality after
modification. Therefore, it is strongly recommended to define all constants
which have a possibility to change in the future or which is coded two times or
over in the program.

< Guideline of Header File Coding >
-- Define all constants which have a possibility to change in the future or which

is coded two times or over in the program.
-- Define all index numbers of MB/MD/MW/ML memory referring to

“MB/MD/MW/ML memory assignments”. The file name of a header file has to
be “MB.hed”, “MD.hed”, “MW.hed” or “ML.hed” respectively. And the defined
name in a header file has to be “MB.XXXX”, “MD.XXXX”, “MW.XXXX” or
“ML.XXXX” respectively.

-- Define all index numbers of I/O referring to “I/O assignments”. The file name
of a header file has to be “IO.hed”. And the defined name in a header file has
to be “I.XXXX” for input or “O.XXXX” for output.

-- Define all index numbers of a TIM variable referring to “Timer assignments”.
The file name of a header file has to be “TIM.hed”. And the defined name in a
header file has to be “TIM.XXXX”.

-- Define all index numbers of a PM variable referring to “Robot position
assignments”. The file name of a header file has to be “PM.hed”. And the
defined name in a header file has to be “PM.XXXX”.

The sample system header files based on the above mentioned guideline are
shown below. There are five header files.

Contents File Name
ML memory assignments ML.hed
I/O assignments IO.hed
Timer assignments TIM.hed
Robot position assignments PM.hed
System constants System.hed

< ML.hed >

'==========================
' ML memory assignment
' Header File
' ML.hed
'=========================
Define ML.MODE 1 'Operation mode
Define ML.RUN.TIME 3 'Total running time (sec)
Define ML.STOP.TIME 4 'Total stopping time (sec)
Define ML.CYCLE.TIME 5 'Cycle time (msec)

!
Guideline for
Programming

! Note

3 Program Development Guideline

 3-10

Define ML.COUNT 6 'Number of cycles

< IO.hed >

'=====================
' I/O Assignment
' Header File
' IO.hed
'====================
'***Input***
Define I.READY 1 'Ready button
Define I.START 2 'Start button
Define I.MANUAL 3 'Manual button
Define I.ERROR 4 'Error
'***Output***
Define O.BLUE 1 'Signal tower blue lamp
Define O.RED 2 'Signal tower red lamp
Define O.BUZZER 5 'Buzzer

< TIM.hed >

'======================
' Timer assignment
' Header File
' TIM.hed
'=====================
'*** Timer number ***
Define TIM.STOP 1 'For stopping time
Define TIM.CYCLE 3 'For cycle time
'*** Timer constants ***
Define TMAX.STOP 1728000 'Maximum stopping time--20 days
Define TMAX.CYCLE 3600 'Maximum cycle time--1 hour

< PM.hed >

'===============================
' Robot position assignment
' Header File
' PM.hed
'===============================
Define PM.ORIGIN 1 'Origin
Define PM.PICK 100 'A point (pocking position)
Define PM.PLACE 101 'B point (placing position)

< System.hed >

'=======================
' System Constants
' Header File
' System.hed
'======================

3 Program Development Guideline

 3-11

'*** COM port for robot control ***
Define ROBOT.COM.PARA "COM0" 'OPEN parameter
Define ROBOT.FNO 1 'File number
Define ROBOT.NO 1 'Robot number
'*** Operation mode ***
Define MODE.MANUAL 0 'Manual mode
Define MODE.READY 10 'Ready mode
Define MODE.RUN 11 'Running mode
Define MODE.ERROR 12 'Error mode
'*** Signal tower control command ***
Define RED.BLINK 1 'Blink red
Define BLUE.BLINK 2 'Blink blue
Define BLUE.LIGHT 3 'Light blue
'*** Buzzer control command ***
Define BUZZER.STOP 0 'Stop buzzer
Define BUZZER.START 1 'Start buzzer
'*** Robot control command ***
Define ROBCMD.STOP 1 'Stop robot
Define ROBCMD.ORIGIN 2 'Origin
Define ROBCMD.PICK 3 'Pick
Define ROBCMD.PLACE 4 'Place
'*** Delay constants ***
Define BLINK.INTERVAL 1.0 'Blinking time of signal tower (sec)
Define BUZZER.INTERVAL 0.2 'Buzzer control time (sec)

3 Program Development Guideline

 3-12

3.6 Job Programming
The range of one job program is coded program steps from the “Job Name”
statement to the next one or to the end step of a source file. Therefore, both
only one job and two or over jobs can be coded in a source file.

Job Name …

Job Name …

Job Name …

Range of a job

Job1.bas Job2.bas

< Guideline of number of jobs in a source file >
As described in “3.4 Job Structure”, considering the reusability of a program
and the easiness of debugging, only one job has to be coded in one source file.

The sample source files based on the above mentioned guideline are created as
one job for one source file as follows.

Job Name File Name
Init Init.bas
Mode Mode.bas
Main Main.bas
Robot Robot.bas
Tower Tower.bas
Buzzer Buzzer.bas

The explanation of each job is described below.

< Coding Guideline >
A Hrbasic program can be coded in a free style. But for the purpose of the
maintenancebility and quality of a program, it is necessary to adopt the
common style to the coding.
We made such coding guideline and it is strongly recommended that you are
programming in accordance with the guideline. See “HrBasic Coding Guideline”
about details.

3.6.1 Init Job
< Explanation >

!
Guideline for
Programming

!
Guideline for
Programming

3 Program Development Guideline

 3-13

The job initializes the ML memory, the global variables i and the output
signals.
MB/MD/MW/ML memory continues to hold the previous value after the power
on. A Timer, an I/O variable and a global variable are cleared with zero value
after the power on.
If it is necessary to set initial value to MB/MD/MW/ML memory, a timer, an
I/O variable and a global variable, it has to be executed in this job.

(1) How to start Init job first in the system
Init job has to start first of all jobs. After power on, jobs starts according
to the order which is defined in a make file. So, Init job program has to be
registered as the first program in a make fileii.

(2) How to inhibit the execution of other jobs until Init job is completed
STP starts all jobs in order as defined in a make file. During the
initialization, the execution of jobs except Init job has to be inhibited. The
sample program uses the global variable g.InitEnd% which becomes 1
when the initialization is completed. Other job waits that g.InitEnd%
becomes 1 at the top of program.

(3) Job Off when Init terminates.
If a job never runs anymore, it is better that the job terminates by Job
Off statement. The terminated job by Job Off never uses the resource of
STP.

< Sample Program >

'============================
' System Initialization
' Init.bas
'===========================
Job Name "Init" 'Job name

'*** Header File ***
Include "ML.hed"
Include "IO.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed

'*** Executable Program ***

 g.InitEnd% = 0 'Initialization not completed
 ML(ML.MODE) = MODE.MANUAL 'Set initial mode
 ML(ML.CYCLE.TIME) = 0 'Clear cycle time

 OUTB(O.BLUE) = 0 'Intialize outputs
 OUTB(O.RED) = 0
 OUTB(O.BUZZER) = 0

i Global variable: See “6.2.3 Local variable and global variable” about details.
ii Make file: Configuration file of compilation. Refer to “HBDE operation manual” or HBDE help
about details.

3 Program Development Guideline

 3-14

 g.InitEnd% = 1 'Initialization completed

 Job "Init" Off 'Terminate this job

3.6.2 Mode Job
< Explanation >

Mode job change operation mode by watching remote inputs of operation
buttons.
The job waits for g.InitEnd%=1 as the completion of Init job and runs infinitely
until power off.

< Sample Program >

'======================
' Mode Management
' Mode.bas
'======================
Job Name "Mode" 'Job name

'*** Header File ***
Include "ML.hed"
Include "IO.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed
 Global g.ModeChange% 'Mode changed
 Global g.Error% 'Error code

'*** Executable Program ***
 '---Job Initialization---
 Wait g.InitEnd%=1 'Wait for initialization completed

 '---Main Loop---
*LOOP
 'Check already mode chenged
 If g.ModeChange% = 1 Then GoTo *LOOP

 'Change mode by operation
 Select Case ML(ML.MODE)
 Case MODE.ERROR 'Error mode
 GoSub *CHECK.MANUAL 'Check manual button
 If ret% = 1 Then
 g.Error% = 0 'Clear error information
 GoTo *LOOP 'Mode chenged
 EndIf
 Case MODE.MANUAL 'Manual mode
 GoSub *CHECK.READY 'Check ready button
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 Case MODE.READY 'Ready mode

3 Program Development Guideline

 3-15

 GoSub *CHECK.ERROR 'Check error input
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 GoSub *CHECK.MANUAL 'Check manual button
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 GoSub *CHECK.RUN 'Check start button
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 Case MODE.RUN 'Running mode
 GoSub *CHECK.ERROR 'Check error input
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 GoSub *CHECK.MANUAL 'Check manual button
 If ret% = 1 Then GoTo *LOOP 'Mode chenged
 Case Else
 ML(ML.MODE) = MODE.MANUAL
 End Select

 GoTo *LOOP

'***
'Procedure: CHECK.ERROR
'Summary: Check error input
'Return: [OUT] ret% =1:Mode chenged
'Argument: [IN] Nothing
'Caution:
'***
*CHECK.ERROR
 ret% = 0 'Clear return value
 If INB(I.ERROR) = 1 or g.Error% <> 0 Then 'Error input ON or job error
 ML(ML.MODE) = MODE.ERROR 'Change mode
 g.ModeChange% = 1
 ret% = 1
 EndIf
 Return

'***
'Procedure: CHECK.MANUAL
'Summary: Check manual button
'Return: [OUT] ret% =1:Mode chenged
'Argument: [IN] Nothing
'Caution:
'***
*CHECK.MANUAL
 ret% = 0 'Clear return value
 If INB(I.MANUAL) = 1 Then 'Manual button ON
 ML(ML.MODE) = MODE.MANUAL 'Change mode
 g.ModeChange% = 1
 ret% = 1
 EndIf
 Return

'***
'Procedure: CHECK.READY

3 Program Development Guideline

 3-16

'Summary: Check ready button
'Return: [OUT] ret% =1:Mode changed
'Argument: [IN] Nothing
'Caution:
'***
*CHECK.READY
 ret% = 0 'Clear return value
 If INB(I.READY) = 1 Then 'Ready button ON
 ML(ML.MODE) = MODE.READY 'Change mode
 g.ModeChange% = 1
 ret% = 1
 EndIf
 Return

'***
'Procedure: CHECK.RUN
'Summary: Check start button
'Return: [OUT] ret% =1:Mode changed
'Argument: [IN] Nothing
'Caution:
'***
*CHECK.RUN
 ret% = 0 'Clear return value
 If INB(I.START) = 1 Then 'Start button ON
 ML(ML.MODE) = MODE.RUN 'Change mode
 g.ModeChange% = 1
 ret% = 1
 EndIf
 Return

3.6.3 Main Job
< Explanation >

Main job controls the whole motion process of the system after the
initialization is completed.
Waiting for the completion of Init job is the same as Mode job.
The job controls lamps of a signal tower and controls a buzzer in Error mode.
The control of lamps and a buzzer is executed only once after mode changed.
The actual control is executed by the command instructed to Tower job and
Buzzer job using a global variable.
In Ready mode or Running mode, similarly, the job controls a robot by the
command instructed to Robot job using a global variable. And then the job
waits for the completion of a robot control.
In Error mode or Manual mode, the job instructs stopping a robot to Robot job.
And the job calculates the total running time, the total stopping time, the cycle
time and the number of cycles, and then sets the values to ML memory for PC.
The job runs infinitely until power off.

< Sample Program >

'===================

3 Program Development Guideline

 3-17

' Main Control
' Main.bas
'===================
Job Name "Main" 'Job name

'*** Header File ***
Include "ML.hed"
Include "TIM.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed
 Global g.ModeChange% 'Mode changed
 Global g.RobotCmd% 'Robot control command
 Global g.TowerCmd% 'Signal tower control command
 Global g.BuzzerCmd% 'Buzzer control command

'*** Executable Program ***
 '---Job Initialization---
 Wait g.InitEnd%=1 'Wait for initialization completed

 '---Main Loop---
*LOOP
 'Only one time after mode changed
 If g.ModeChange% = 1 Then 'Mode changed
 'For each mode
 Select Case ML(ML.MODE)
 Case MODE.ERROR 'Error mode
 g.TowerCmd% = RED.BLINK 'Blink red
 g.BuzzerCmd% = BUZZER.START 'Start buzzer
 g.RobotCmd% = ROBCMD.STOP 'Stop robot
 Wait g.RobotCmd% = 0 'Wait for completion
 Case MODE.MANUAL 'Manual mode
 g.TowerCmd% = BLUE.BLINK 'Blink blue
 g.BuzzerCmd% = BUZZER.STOP 'Stop buzzer
 g.RobotCmd% = ROBCMD.STOP 'Stop robot
 Wait g.RobotCmd% = 0 'Wait for completion
 Case MODE.READY 'Ready mode
 g.TowerCmd% = BLUE.BLINK 'Blink blue
 g.RobotCmd% = ROBCMD.ORIGIN 'Move to origin
 Wait g.RobotCmd% = 0 'Wait for completion
 Case MODE.RUN 'Running mode
 g.TowerCmd% = BLUE.LIGHT 'Light blue
 Case Else
 End Select
 g.ModeChange% = 0 'Not mode changed
 'Measure stopping time
 If ML(ML.MODE) <> MODE.RUN Then
 TIM(TIM.STOP) = TMAX.STOP 'Start timer
 Else
 t.stop! = TMAX.STOP - TIM(TIM.CYCLE) 'Calculate time

3 Program Development Guideline

 3-18

 ML(ML.STOP.TIME) = ML(ML.STOP.TIME) + t.stop! 'Set time
 EndIf
 EndIf

 'All the time
 Select Case ML(ML.MODE)
 Case MODE.RUN 'Running mode
 'Robot control
 TIM(TIM.CYCLE) = TMAX.CYCLE 'Start timer for cycle time
 g.RobotCmd% = ROBCMD.PICK 'Request robot to pick
 Wait g.RobotCmd% = 0 'Wait for completion
 g.RobotCmd% = ROBCMD.PLACE 'Request robot to place
 Wait g.RobotCmd% = 0 'Wait for completion
 t.cycle! = TMAX.CYCLE - TIM(TIM.CYCLE) 'Calculate cycle time
 'Time measurement
 ML(ML.CYCLE.TIME) = t.cycle! * 1000 'Set cycle time (msec)
 ML(ML.RUN.TIME) = ML(ML.RUN.TIME) + t.cycle! 'Set total
running time
 ML(ML.COUNT) = ML(ML.COUNT) + 1 'Count up number of cycles
 Case Else
 End Select

 GoTo *LOOP

3.6.4 Robot Job
< Explanation >

The job controls a robot motion according to a received command from Main job.
In Error mode or Manual mode, the job never controls a robot for safety.
Waiting for the completion of Init job is the same as Mode job.
The job runs infinitely until power off.

< Sample Program >

'=========================
' Robot Control
' Robot.bas
'=========================
Job Name "Robot" 'Job name

'*** Header File ***
Include "ML.hed"
Include "PM.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed
 Global g.RobotCmd% 'Robot control command
 Global g.Error% 'Error code

'*** Executable Program ***

3 Program Development Guideline

 3-19

 '---Job Initialization---
 On Error GoTo *ERR.HANDLER 'Register error handler
 Wait g.InitEnd%=1 'Wait for initialization completed
 'Open COM port for robot
 Open ROBOT.COM.PARA As #ROBOT.FNO RobType=580 RobNoList=1
 SetRobNo(ROBOT.NO) 'Set default robot number
 Enable #ROBOT.FNO 'Enable robot motion

 '---Main Loop---
*LOOP
 'Never execute in error or manual mode for safety
 Select Case ML(ML.MODE)
 Case MODE.ERROR, MODE.MANUAL
 g.RobotCmd% = 0 'Clear command
 GoTo *LOOP
 Case Else
 End Select

 'For each command
 Select Case g.RobotCmd%
 Case ROBCMD.STOP 'Stop robot
 GoSub *ROB.STOP
 Case ROBCMD.ORIGIN 'Move to origin
 GoSub *ROB.ORIGIN
 Case ROBCMD.PICK 'Move to picking
 GoSub *ROB.PICK
 Case ROBCMD.PLACE 'Move to placing
 GoSub *ROB.PLACE
 Case Else
 End Select
 g.RobotCmd% = 0 'Clear command for response

 GoTo *LOOP

 '---Error Handler---
*ERR.HANDLER
 Disable #ROBOT.FNO 'Disable motion
 g.Error% = Err 'Get job error code
 Wait ML(ML.MODE)=MODE.ERROR 'Wait for error mode
 RobClearErr #ROBOT.FNO 'Clear robot error
 Resume *LOOP

'***
'Procedure: ROB.STOP
'Summary: Stop robot
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*ROB.STOP
 Disable #ROBOT.FNO 'Disable motion

3 Program Development Guideline

 3-20

 Return

'***
'Procedure: ROB.ORIGIN
'Summary: Move to origin position
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*ROB.ORIGIN
 Move #ROBOT.FNO, PM(PM.ORIGIN)
 Return

'***
'Procedure: ROB.PICK
'Summary: Movo to picking position
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*ROB.PICK
 Move #ROBOT.FNO, PM(PM.PICK)
 Return

'***
'Procedure: ROB.PLACE
'Summary: Movo to placing position
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*ROB.PLACE
 Move #ROBOT.FNO, PM(PM.PLACE)
 Return

3.6.5 Tower Job
< Explanation >

The job controls a signal tower according to a received command from Main job.
Waiting for the completion of Init job is the same as Mode job.
The job runs infinitely until power off.

< Sample Program >

'=========================
' Signal tower control
' Tower.bas
'=========================
Job Name "Tower" 'Job name

'*** Header File ***

3 Program Development Guideline

 3-21

Include "IO.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed
 Global g.TowerCmd% 'Signal tower control command

'*** Executable Program ***
 '---Job Initialization---
 Wait g.InitEnd%=1 'Wait for initialization completed

 '---Main Loop---
*LOOP
 'For each command
 Select Case g.TowerCmd%
 Case RED.BLINK 'Blink red
 GoSub *BLINK.RED
 Case BLUE.BLINK 'Blink blue
 GoSub *BLINK.BLUE
 Case BLUE.LIGHT 'Light blue
 GoSub *LIGHT.BLUE
 Case Else
 GoSub *ALL.OFF 'All lamp off
 End Select

 GoTo *LOOP

'***
'Procedure: BLINK.RED
'Summary: Blink red
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*BLINK.RED
 OUTB(O.BLUE)=0 'Blue lamp off
 Delay BLINK.INTERVAL
 OUTB(O.RED)=1
 Delay BLINK.INTERVAL
 OUTB(O.RED)=0
 Return

'***
'Procedure: BLINK.BLUE
'Summary: Blink blue
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*BLINK.BLUE
 OUTB(O.RED)=0 'Red lamp off

3 Program Development Guideline

 3-22

 Delay BLINK.INTERVAL
 OUTB(O.BLUE)=1
 Delay BLINK.INTERVAL
 OUTB(O.BLUE)=0
 Return

'***
'Procedure: LIGHT.BLUE
'Summary: Light blue
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*LIGHT.BLUE
 OUTB(O.RED)=0 'Red lamp off
 OUTB(O.BLUE)=1 'Blue lamp on
 Return
'***
'Procedure: ALL.OFF
'Summary: All lamp off
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*ALL.OFF
 OUTB(O.RED)=0 'Red lamp off
 OUTB(O.BLUE)=0 'Blue lamp off
 Return

3.6.6 Buzzer Job
< Explanation >

The job controls a buzzer according to a received command from Main job.
Waiting for the completion of Init job is the same as Mode job.
The job runs infinitely until power off.

< Sample Program >

'=========================
' Buzzer control
' Buzzer.bas
'=========================
Job Name "Buzzer" 'Job name

'*** Header File ***
Include "IO.hed"
Include "System.hed"

'*** Global Variables ***
 Global g.InitEnd% 'Initialization completed
 Global g.BuzzerCmd% 'Buzzer control command

3 Program Development Guideline

 3-23

'*** Executable Program ***
 '---Job Initialization---
 Wait g.InitEnd%=1 'Wait for initialization completed

 '---Main Loop---
*LOOP
 'For each command
 Select Case g.BuzzerCmd%
 Case BUZZER.STOP 'Stop buzzer
 GoSub *STOP.BUZZER
 Case BUZZER.START 'Start buzzer
 GoSub *START.BUZZER
 Case Else
 GoSub *STOP.BUZZER 'Stop buzzer
 End Select

 GoTo *LOOP

'***
'Procedure: STOP.BUZZER
'Summary: Stop buzzer
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*STOP.BUZZER
 OUTB(O.BUZZER)=0 'Buzzer OFF
 Return

'***
'Procedure: START.BUZZER
'Summary: Start buzzer
'Return: [OUT] Nothing
'Argument: [IN] Nothing
'Caution:
'***
*START.BUZZER
 OUTB(O.BUZZER)=1
 Delay BUZZER.INTERVAL
 OUTB(O.BUZZER)=0
 Delay BUZZER.INTERVAL
 Return

3 Program Development Guideline

 3-24

3.7 Debug
After the programming is finished, do the test and the debugging using HBDE
and STP. The debugging flow which includes the programming is shown below.

(1) Edit source programs

• Create and edit HrBasic source files to use a text editor or
HrBasic Editor.

• Create and edit HrBasic header or macro files to use a text
editor or HrBasic Editor if necessary.

• Create and edit a make file to manage programs that will be
downloaded to STP.

(2) Compile and link
• Compile and link the programs to specify the make file.
• If compiling or linking errors have occurred, modify the

programs and compile and link them again.
(3) Download the program

• Download the program without compiling or linking errors to
STP.

(4) Debug the program
• Check the programs in STP run correctly and debug them.
• If an error occurs or the programs run with the unexpected

execution, modify the program and retry 2. 3. 4.

4 Individual Functions

 4-1

4. Individual Functions

4.1 Job
In HrBasic, as described in chapter 3, the system control programs are divided
and coded into jobs from the point of view of operations, functions with the
hierarchical structure. Each job is executed concurrently in the multi job
method. (Max 32 jobs)

Maximum 32 jobs runs concurrently.

Robot control
job

Parts supplying
control job

Pallet positioning
control

Mode management
job

By the multi job method, a program can be structured by dividing the jobs
according to the functions and/or devices. Therefore, a program would be more
simplified and can be packaged to form a job. You can create libraries of
application systems easier.

 3
 2

Pallet
positioning job 1

 3

 2

Parts supplying
job 1

 3

 2

Robot Control
job 1

Library

New system program

HrBasic has the following features.

 Maximum amount of jobs and steps
Job : 32
Step : about 45000 to 57000 steps of all jobs in 1 M bytes memory

 Starting jobs
In Hrbasic, all jobs defined in a make file starts automatically in order of
the definitions after STP system starts or a program is downloaded.
If the starting of a job has to be controlled by other job, the job has to
stop at the first step of the program by Job Off statement.

The range of one job program is coded program steps from the “Job Name”
statement to the next one or to the end step of a source file. Therefore, both
only one job and two or over jobs can be coded in a source file.

4 Individual Functions

 4-2

Job Name …

Job Name …

Job Name …

Range of a job

Job1.bas Job2.bas

< Guideline of number of jobs in a source file >
As described in Chapter 3, considering the reusability of a program and the
easiness of debugging, only one job has to be coded in one source file.

Basically, jobs are independent from each other and a job never influences
another job. But, the following functions are common in all jobs or available for
a job to control other job.

 Reserved memory ……………… See “4.2 Reserved Memory”.

 Timer ……………………………. See “4.3.1 TIM”.

 File and communication ……… See “4.4 File and Communication”.

 Global variable ………………. See “6.2.3 Local variable, Global Variable
and Network Global Variable”.

 Job Start/On/Off statement ---- See “9.3 Reference”.

 Time$ and Date$ ------------------ See “9.3 Reference”.

See “3.4 Job Structure” about how to decide job structure.

!
Guideline for
Programming

!
Guideline for
Programming

4 Individual Functions

 4-3

4.2 Reserved Memory
The memory which HrBasic can access contains the following types. Reserved
memory is explained in this section.

Memory
Reserved
Memory

Variable

STP reserved memory

HNC reserved memory

Global variable

Local variable

Network global variable
Reserved memory has the two kinds, STP reserved memory and HNC i
reserved memory. They are explained in detail below.

(1) STP reserved memory
The list of STP reserved memory is shown below.

Memory Type Format Index
Number

Meaning

Bit memory MBn n=0 to 1023 General purpose bit
memory

Byte memory MDn n=0 to 1023 General purpose byte
memory

Word memory MWn n=0 to 16383 General purpose word (2
bytes) memory

Long word memory MLn n=0 to 1023 General purpose long
word (4 bytes) memory

Input bit INBn n=0 to 255
Max 4096 bits
can be
extended.

Remote input bit

Input byte INDn n=0 to 31
Max 512
bytes can be
extended.

Remote input byte

Output bit OUTBn n=0 to 255
Max 4096 bits
can be
extended.

Remote output bit

Output byte OUTDn n=0 to 31
Max 512
bytes can be
extended.

Remote output byte

Position memory Pn Position data memory
 X axis data PXn X axis data of Pn
 Y axis data PYn Y axis data of Pn
 Z axis data PZn Z axis data of Pn
 W axis data PWn W axis data of Pn
 R axis data PRn R axis data of Pn
 C axis data PCn C axis data of Pn
 ARM PARMn ARM data of Pn
 M data PDMn M data of Pn
 F code PDFn F code of Pn
 S code PDSn

n=0～7999
Using range
can be defined
by program.

 S code of Pn

i HNC is a component of robot motion control. See “1.1 Hirata Robot System”.

4 Individual Functions

 4-4

MB/MD/MW/ML memory holds the last value after the power reset. But other
memory is cleared by zero.

(2) HNC reserved memory
The list of HNC reserved memory is shown below.

Memory Type Format Index
Number

Meaning

HNC input bit IRBn n=0 to 31 HNC remote input bit
HNC input byte IRDn n=0 to 3 HNC remote input byte
HNC output bit ORBn n=0 to 31 HNC remote output bit
HNC output byte ORDn n=0 to 3 HNC remote output byte
Robot position
memory

PMn

Robot position data memory
Teaching data is held here.

 M data MMn M data of PMn
 F code FMn

n=0 to 999

 F code of PMn
Robot status STATUSn n=0 to 9 Robot status information
Robot current position HERE Robot current position data
Robot expanded
parameter

EXPARAn n=0～1099 Robot expanded parameter

 HNC reserved memory holds the last value after the power reset.
 Ref function has to be used to access HNC reserved memory. Ref function

is available after Open statement to open the connection for HNC.
 MM and FM can be read but cannot be written.

4.2.1 MB/MD
MB/MD memory is the reserved memory of STP.

MB/MD holds the last value after the power reset.

 MB
This memory is general purpose bit memory accessed by MB0 to MB1023
which can hold the value of zero or one.

 MD
This memory is general purpose byte (8 bits) memory accessed by MD0 to
MD1023 which can hold the value of zero to 255 (FFh).

MB memory is the bit assignment memory overlapped by MD0 to MD127.
For example, MD0 includes 8 bits of MB0 to MB7. So, MB0 to MB7 represents
each bit of the MD0 value which can be 0 to 255 (FFh). The following table
shows the relation of bit number and the exponential value.

Bit 7 6 5 4 3 2 1 0
MD0 MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

Exponential
value

27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)
In case that the value of MD0 is 0, 150 or 255, the bits of MB0-MB7 are shown
below.

! Note

! Note

! Note

4 Individual Functions

 4-5

MB
MD0 value MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

0 0 0 0 0 0 0 0 0
150 1 0 0 1 0 1 1 0
255 1 1 1 1 1 1 1 1

Exponential value 27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)
In case that MD0 is 150, the following equation shows how MD0 value is
derived from MB0-MB7.

150 = 27×1 + 26×0 + 25×0 + 24×1 + 23×0 + 22×1 + 21×1 + 20×0
 = 128×1 + 64×0 + 32×0 + 16×1 + 8×0 + 4×1 + 2×1 + 1×0

Explained by the sample of MD0, MB0-MB7, the same relation of MD and MB
are applied to MD1-MD127 as follows.

MD MB
0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8
2 23 22 21 20 19 18 17 16
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
126 1015 1014 1013 1012 1011 1010 1009 1008
127 1023 1022 1021 1020 1019 1018 1017 1016
128
129

.

.
1023

 MB(n), MD(n) are equivalent to MBn, MDn.
e.g.) MB(3) MD(5)

 “n” of MBn, MDn can be specified by the indirect expression such as a
formula, variable or reserved memory. But in this case, parentheses are
necessary for “n”.
e.g.) MB(MD5) --- The MB with the index number of MD5 value.

4.2.2 MW
MW memory is the reserved memory of STP.

MW holds the last value after the power reset.

MW is general purpose word (2 bytes) memory accessed by nd the hex value of
0000h to FFFFh.
MW is independent from MB/MD and has no overlapped area.

 MW(n) is equivalent to MWn.
e.g.) MW(3)

 “n” of MWn can be specified by the indirect expression such as a formula,
variable or reserved memory. But in this case, parentheses are necessary
for “n”.
e.g.) MW(MD5) --- The MW with the index number of MD5 value.

! Note

! Note

! Note

4 Individual Functions

 4-6

4.2.3 ML
ML memory is the reserved memory of STP.

ML holds the last value after the power reset.

ML is general purpose long word (4 bytes) memory accessed by ML0 to ML1023
which can hold the decimal value of -2147483648 to 2147483647 and the hex
value of 00000000h to FFFFFFFFh.
ML is independent from MB/MD/MW and has no overlapped area.

 ML(n) is equivalent to MLn.
e.g.) ML(3)

 “n” of MLn can be specified by the indirect expression such as a formula,
variable or reserved memory. But in this case, parentheses are necessary
for “n”.
e.g.) ML(MD5) --- The ML with the index number of MD5 value.

4.2.4 INB/IND/OUTB/OUTD
INB/IND/OUTB/OUTD is the reserved memory of STP.

 INB
INB is bit memory accessed by INB0 to INB255 as default, to INB4095
as extension which holds a bit state of remote input.

 IND
IND is byte memory accessed by IND0 to IND31 as default, to IND511 as
extension which is overlapped by INB area and holds a byte state of
remote input.

 OUTB
OUTB is bit memory accessed by OUTB0 to OUTB255 as default, to
OUTB4095 as extension which controls an on/off signal to remote output.

 OUTD
OUTD is byte memory accessed by OUTD0 to OUTD31 as default, to
OUTD511 as extension which is overlapped by OUTB area and controls a
byte data to remote output.

Extended I/O area (INB256-INB4095, IND32-IND511, OUTB256-OUTB4095,
and OUTD32-OUTD511) can be access by a program though hardware is not
connected to the area. In this case, input data to read is always zero and output
data is never controlled.

INB and OUTB represent the bit expression of IND and OUTD like MB/MD.
For example, IND0 includes 8 bits of INB0 to INB7. So, INB0 to INB7
represents each bit of the IND0 value which can be 0 to 255 (FFh). The
following table shows the relation of bit number and the exponential value.

! Note

! Note

! Note

4 Individual Functions

 4-7

Bit 7 6 5 4 3 2 1 0
IND0 INB7 INB6 INB5 INB4 INB3 INB2 INB1 INB0

OUTD0 OUTB7 OUTB6 OUTB5 OUTB4 OUTB3 OUTB2 OUTB1 OUTB0
Exponential

value
27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)
In case that the value of IND0 is 0, 150 or 255, the bits of INB0-INB7 are
shown below.

INB
IND0 value INB7 INB6 INB5 INB4 INB3 INB2 INB1 INB0

0 0 0 0 0 0 0 0 0
150 1 0 0 1 0 1 1 0
255 1 1 1 1 1 1 1 1

Exponential value 27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)
In case that IND0 is 150, the following equation shows how IND0 value is
derived from INB0-INB7.

150 = 27×1 + 26×0 + 25×0 + 24×1 + 23×0 + 22×1 + 21×1 + 20×0
 = 128×1 + 64×0 + 32×0 + 16×1 + 8×0 + 4×1 + 2×1 + 1×0

Explained by the sample of IND0, INB0-INB7, the same relation of IND and
INB are applied to all of IND area. And OUTB/OUTD is the same.

IND/
OUTD INB/ OUTB

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8
.
.

30 247 246 245 244 243 242 241 240
31 255 254 253 252 251 250 249 248
.
.

510 4087 4086 4085 4084 4083 4082 4081 4080
511 4095 4094 4093 4092 4091 4090 4089 4088

 INB(n), IND(n), OUTB(n), OUTD(n) are equivalent to INBn, INDn,
OUTBn, OUTDn.
e.g.) INB(3) OUTD(5)

 “n” of INBn, INDn, OUTBn, OUTDn can be specified by the indirect
expression such as a formula, variable or reserved memory. But in this
case, parentheses are necessary for “n”.
e.g.) INB(MD5) --- The INB with the index number of MD5 value.

4.2.5 P and Its Structure
P memory is the reserved memory of STP.
P memory is useful for the case that a program calculates a robot position data
and accessed by P0 to P7999.
In typical case, a program reads a potion data form HNC to P memory and
adds some calculation to it and writes it back to HNC.
Before accessing P memory in a job, declaration DimPos is needed to declare
how many P memories the program uses.
For example, the following declares one hundred P memories to uses in a job.

DimPos 100

! Note

4 Individual Functions

 4-8

After this declaration, a program can use one hundred Ps from P0 to P99.
The number of Ps declared by DimPos is effective only in a declared job.
P memory has to be initialized by InitPos statement before use.

P Memory
P0000

P1999

P5999

P7999

Job Name "Init"
Include "Sample.hed"
DisPos 8000
InitPos 0 to 7999
 :

Job Name "Mode"
Include "Sample.hed"
DisPos 2000
 :

Job Name "Main"
Include "Sample.hed"
DisPos 6000
 :

Mode job uses 2000 Ps from
P0 to P1999.

Main job uses 6000 Ps from
P0 to P5999.

Init job uses 8000 Ps from
P0 to P7999 and initializes
it.

P memory has the following data structure.

Data Item Format Data Range Initial Note
X axis data PXn -2147483.648 to 2147483.647 0.0
Y axis data PYn -2147483.648 to 2147483.647 0.0
Z axis data PZn -2147483.648 to 2147483.647 0.0
W axis data PWn -2147483.648 to 2147483.647 0.0
R axis data PRn -2147483.648 to 2147483.647 0.0
C axis data PCn -2147483.648 to 2147483.647 0.0

Single precision floating
value of 4 bytes

Arm
direction

PARMn LEFTY(0) / RIGHTY(1) 0 1 byte area.
Only used for SCARA
type robot.

M data PDMn 0 to 99, 255 255 2 bytes area.
The value 255 means
the end point.

F code PDFn 0 to 99 0 2 bytes area.
S code PDSn 0 to 99 0 2 bytes area.
Coordinate
type

－ － 0 Cannot access

 P(n), PX(n), PY(n)….. are equivalent to Pn, PXn, PYn…...
e.g.) P(5) PX(3) PY(1))

 “n” of Pn, PXn, PYn…... can be specified by the indirect expression such as
a formula, variable or reserved memory. But in this case, parentheses are
necessary for “n”.
e.g.) P(MD5) --- The P with the index number of MD5 value.

PXn PYn PZn PWn PRn PCn PARMn PDMn PDFn PDSn

Pn

X
axis

Y
axis

Z
axis

W
axis

R
axis

C
axis

Arm
direction

M data F code S codeCannot
access

Coordinate type

! Note

4 Individual Functions

 4-9

 PX(MD3) --- The PX with the index number of MD3 value.

The examples of P memory usage are shown below.

 Read the robot position data (robot #1, address 110) to P10.
P10 = Ref(#fno%[rno:1], PM110)

After this program is executed, value of each item is set as follows.
PX10 X axis data of PM110
PY10 Y axis data of PM110
PZ10 Z axis data of PM110
PW10...................... W axis data of PM110
PR10………………...R axis data of PM110
PC10…………………C axis data of PM110
PARM10................. RIGHTY or LEFTY of PM110
PDM10 M data of PM110
PDF10 F code of PM110
PDS10 S code of PM110

A program can treat PX10, PY10… like a variable. A coordinate type in
P10 area is also set from PM110 but it cannot be access by a program.

 Read the current position of robot #1 to P0 and change the Z, W axis
position, and then move to the position.

P0 = Ref(#fno%[rno:1],HERE) ‘Get current position
 ‘M,F,S code cleared
PDM0=1:PDF0=99:PDS=1 ‘!! Set M,F,S code !!
PZ0 = PZ0－10 ‘Z axis: 10mm up
PW0=200 ‘W axis: 200 degree
Move #fno%[rno:1], PTP,P0 ‘Move changed position

Ref(#x, HERE) can get only the current axis position, arm component
and dimension code. M,F,S code cannot be got and the its value is set to
zero because the robot controller cannot decide M,F,S code for the
current position. Therefore, a program has to set valid M,F,S code to Pn
memory after REF(#1, HERE) is executed.

 Read the current position of robot #1 to P0 and write it to HNC position
memory.

P0 = Ref(#fno%[rno:1], HERE) ‘Read current position
 ‘M,F,S code cleared
PDM0=1:PDF0=99:PDS=1 ‘!! Set M,F,S code !!
‘Write P0 to robot position PM100
Ref(#fno%[rno:1], PM100) = P0

Ref(#x, HERE) can get only the current axis position, arm component
and dimension code. M,F,S code cannot be got and the its value is set to
zero because the robot controller cannot decide M,F,S code for the
current position. Therefore, a program has to set valid M,F,S code to Pn
memory after REF(#1, HERE) is executed.
If only MM100 is set, program as follows.

Ref(#1[rno:1],MM100)=50 ‘Set 50 to M data of PM100

 Read the position data of robot #1 and change the position to write it
back.

P0 =Ref(#fno%[rno:1], PM0) ‘Read address 0 to P0
PX0 = PX0 + 100.0 ‘X axis +100mm

4 Individual Functions

 4-10

PY0 = PY0 - 50.0 ‘Y axis -50mm
PDM0 = 80 ‘Set 80 to M data
PDF0 = 30 ‘Set 30 to F code
Ref (#fno%[rno:1], PM0) = P0 ‘Write back

Read the robot position PM0 to P0 in STP and change some value of P0,
and the write P0 back to the robot position.

PosRec function is available to set the data to P memory.
P0 = PosRec(10, 20, 30, 40, 50, 60, LEFTY, 1, 1, 99, 1)
See the PosRec reference about details.

 Read the position data of robot #1 and copy it to another robot position
data.

P1 = Ref(#fno%[rno:1], PM100) ‘Read PM100 to P1
P2 = Ref(#fno%[rno:1], PM200) ‘Read PM200 to P2
PX2 = PX1 ‘Copy X axis data from P1 to P2
PY2 = PY1 ‘Copy Y axis data from P1 to P2
PZ2 = PZ1 ‘Copy Z axis data from P1 to P2
PW2 = PW1 ‘Copy W axis data from P1 to P2
PARM2 = PARM1 ‘Copy arm data from P1 to P2
Ref(#1[rno:1], PM200) = P2 ‘Write P2 to PM200

Read the robot position data PM100, PM200 to P1, P2. Then copy X, Y, Z,
W data of P1 to P2 and then write P2 to PM200.
After this, X, Y, Z, W and arm data of PM200 equals to PM100 but M
data, F code and S code of PM200 has not been changed.

 Set M data and F code by indirection.
For i% = 0 to 49
 P(i%) = Ref (#fno%[rno:1], PM(i%))
 PDM(i%) = 2
 PDF(i%) = i% + 10
 Ref(#fno%[rno:1],PM(i%)) = P(i%)
Next i%

The following procedure is executed from position address 0 to 49.
Read the robot position data to P memory and set 2 to M data and set the
address number + 10 to F code. Then write P memory to the robot
position data.

4.2.6 IRB/IRD/ORB/ORD
IRB/IRD/ORB/ORD is the reserved memory of robot (HNC).

 IRB
IRB is bit memory accessed by IRB0 to IRB31 which holds a bit state of
robot remote input connected with HNC.

 IRD
IRD is byte memory accessed by IRD0 to IRD3 which is overlapped by
IRB area and holds a byte state of robot remote input connected with
HNC.

! Note

4 Individual Functions

 4-11

 ORB
ORB is bit memory accessed by ORB0 to ORB31 which controls an on/off
signal to robot remote output connected with HNC.

 ORD
ORD is byte memory accessed by ORD0 to ORD3 which is overlapped by
ORB area and controls a byte data to robot remote output connected with
HNC.

IRB and ORB represent the bit expression of IRD and ORD.
For example, IRD0 includes 8 bits of IRB0 to IRB7. So, IRB0 to IRB7
represents each bit of the IRD0 value which can be 0 to 255 (FFh). The
following table shows the relation of bit number and the exponential value.

Bit 7 6 5 4 3 2 1 0
IRD0 IRB7 IRB6 IRB5 IRB4 IRB3 IRB2 IRB1 IRB0
ORD0 ORB7 ORB6 ORB5 ORB4 ORB3 ORB2 ORB1 ORB0

Exponential
value

27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)

In case that the value of IRD0 is 0, 150 or 255, the bits of IRB0-IRB7 are shown
below.

IRB
IRD0 value IRB7 IRB6 IRB5 IRB4 IRB3 IRB2 IRB1 IRB0

0 0 0 0 0 0 0 0 0
150 1 0 0 1 0 1 1 0
255 1 1 1 1 1 1 1 1

Exponential value 27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)

In case that IRD0 is 150, the following equation shows how IRD0 value is
derived from IRB0-IRB7.

150 = 27×1 + 26×0 + 25×0 + 24×1 + 23×0 + 22×1 + 21×1 + 20×0
 = 128×1 + 64×0 + 32×0 + 16×1 + 8×0 + 4×1 + 2×1 + 1×0

Explained by the sample of IRD0, IRB0-IRB7, the same relation of IRD and
IRB are applied to all of IRD area. And ORB/ORD is the same.

IRD/
ORD IRB/ ORB

0 7 6 5 4 3 2 1 0
1 15 14 13 12 11 10 9 8
2 23 22 21 20 19 18 17 16
3 31 30 29 28 27 26 25 24

 Ref function has to be used to access IRB/IRD/ORB/ORD. And Ref function
has to be already opened to connect with HNC.
Sample)
 Open “com1:4800,E,7,1” as #fno%
 :
 dat% = Ref(#fno%[rno:1], IRD(5))
 Ref(#fno%[rno:1], ORD(3)) = 10

 IRB(n), IRD(n), ORB(n), ORD(n) are equivalent to IRBn, IRDn, ORBn,
ORDn.

! Note

4 Individual Functions

 4-12

e.g.) IRB(3) ORD(5)
 “n” of IRBn, IRDn, ORBn, ORDn can be specified by the indirect

expression such as a formula, variable or reserved memory. But in this
case, parentheses are necessary for “n”.
e.g.) IRB(MD5) --- The IRB with the index number of MD5 value.

4.2.7 PM/MM/FM/SM
PM/MM/FM/SM is the reserved memory of robot (HNC).
PM represents a block of addressed position data held in HNC. Generally,
teaching data using a teaching pendant connected with a robot controller is
saved to PM memory.
MM, FM or SM is the element of position data, which represents M data, F
code or S code respectively.
Each axis element in PM memory can not be access directly but can be read to
P memory in STP.

Ref function has to be used to access PM/MM/FM/SM. And Ref function has to
be already opened to connect with HNC.
Sample)
 Open “com1:4800,E,7,1” as #fno%
 :
 P0 = Ref(#fno%[rno:1], PM100)

 PM
Using PM, a robot position data block with a specified address can be
accessed. But a program cannot access an axis element in PM memory
directly. It is necessary that a program reads PM memory to P memory
in STP as follows.

P0 = Ref(#fno%[rno:1], PM100) ‘Read robot #1 PM100 to STP P0
Ref(#fno%[rno:2],PM10) = P20 ‘Write STP P20 to robot #2 PM10

After read position data to STP Pn, a program can access or change an
element of position data using the following format. (See “4.2.5 P and Its
Structure”.)

X axis data PXn
Y axis data PYn
Z axis data PZn
W axis data PWn
R axis data PRn
C axis data PCn
Arm direction PARMn
M data PDMn
F code PDFn
S code PDSn
Coordinate type Cannot access

X Y Z W R C Arm MMn FMn SMn

PMn

M data F code S code
Cannot access directly

Coordinate
type

Address n

! Note

4 Individual Functions

 4-13

 MM
MM can directly access M data contained in robot position data at the
specified address.
M data is the motion parameter of robot output signal or motion type.
The range of available setting is 0 to 99. The value 255 has the special
meaning, the end position. Refer to robot operation manual about M
data.
MM can be read or written as follows.

MD1 = Ref(#fno%[rno:1], MM1) ‘Read robot #1 MM1 to MD1
Ref(#fno%[rno:2], MM200) = 99 ‘Write 99 to robot #2 MM200

 FM
FM can directly access F code contained in robot position data at the
specified address.
F code is the speed parameter of robot. The range of available setting is 0
to 99. Refer to robot operation manual about F code.
FM can be read only as follows.

MD1 = Ref(#fno%[rno:1], FM1) ‘Read robot #1 FM1 to MD1

 SM
SM can directly access S code contained in robot position data at the
specified address.
S code is the extended parameter of robot motion. The range of available
setting is 0 to 99. Refer to robot operation manual about S code.
SM can be read only as follows.

MD1 = Ref(#fno%[rno:1], SM1) ‘Read robot #1 SM1 to MD1

 PMn(n), MMn(n), SM(n), FM(n) are equivalent to PMn, MMn, SMn, FMn.
e.g.) PM(5) MM(3)

 “n” of PMn, MMn, SMn, FMn can be specified by the indirect expression
such as a formula, variable or reserved memory. But in this case,
parentheses are necessary for “n”.
e.g.) MM(MD5) --- The M code with the index number of MD5 value.

4.2.8 STATUS
STATUS is the reserved memory of robot (HNC).

Ref function has to be used to access STATUS. And Ref function has to be
already opened to connect with HNC.
Sample)
 Open “com1:4800,E,7,1” as #fno%
 :
 ecode% = Ref(#fno%[rno:1], STATUS0)

STATUS memory is read-only memory to monitor robot status and it always
contains robot motion status and error information.
STATUS memory has the ten items named STATUS0, STATUS1…STATUS9
as follows.

Name Explanation
STATUS0 Robot error code
STATUS1 X axis error information

! Note

! Note

4 Individual Functions

 4-14

Name Explanation
STATUS2 Y axis error information
STATUS3 Z axis error information
STATUS4 W axis error information
STATUS5 R axis error information
STATUS6 C axis error information
STATUS7 未使用
STATUS8 Robot status #1
STATUS9 Robot status #2

Detail of each STATUS is described below.

(1) STATUS0
STATUS0 holds a current error code shown in the following list.

Error Code
Dec Hex

Explanation

0 &H00 No error
9 &H09 Positioning error (See (2) STATUS1-STATUS6.)
16 &H10 Emergency stop
32 &H20 A-CAL not completed (See (2) STATUS1-STATUS6.)
48 &H30 Specified address number is out of range
49 &H31 Move to end point
50 &H32 FAN alarm (Only when FAN ALARM enabled)
64 &H40 Position out of area limit (See (2) STATUS1-STATUS6.)
81 &H51 Overrun error (See (2) STATUS1-STATUS6.)
97 &H61 Communication command error
98 &H62 Command not accepted
99 &H63 System data (SG/SP) destroyed

100 &H64 Cannot read position data from memory card
103 &H67 Servo parameter destroyed
112 &H70 Low voltage of encoder battery
128 &H80 Duplicated command received
130 &H82 Sensor input not ON (Only when SENSOR STOP enabled)
132 &H84 Measurement result out of range (Only when GLASS

ALIGHNMENT enabled)
144 &H90 Move before A-CAL completion
149 &H95 Coordinate conversion error or invalid position data
160 &HA0 Servo driver error (See (2) STATUS1-STATUS6.)
172 &HB0 Cannot servo-lock

192～207 &HC0～&HCF HARL-U2 program error (Only when HARL-U2 enabled)
208～220 &HD0～&HDC Alignment error (Only when ORIFLA enabled)

224 &HE0 Axis interlocked (Only when AXIS INTERLOCK enabled)

(2) STATUS1 - STATUS6
STATUS1 to STATUS6 hold error information of X axis, Y axis, Z axis, W
axis, R axis and C axis respectively. If the following error code is set to
STATUS0, the axis error information is set at the same time.

• Positioning error : Error code 9 (&H09)
The error existence of the axis is set as the following value.

0 No error
1 Error

• A-CAL error : Error code 32 (&H20)
The error information of the axis is set as the following value.

4 Individual Functions

 4-15

0 An origin sensor does not become ON while the axis is
moving in the direction of origin.

1 An origin sensor does not become OFF or the axis cannot
move back to the working area.

2 A limit sensor becomes ON while the axis is moving in
the direction of origin.

4 Counter is under the regulation when reset.
5 Counter is over the regulation when reset.
7 Other error (Not occurred generally)

• Position out of area limit : Error code 64 (&H40)
The error existence and information of the axis is set as the
following value.

0 No error
1 Error on the side of lower limit
2 Error on the side of upper limit

• Overrun error : Error code 81 (&H51)
The error existence and information of the axis is set as the
following value.

0 No error
1 Error on the side of origin
2 Error on the side of overrun
3 Error on the both side

• Servo driver error : Error code 160 (&HA0)
The error existence of the axis is set as the following value.

0 No error
1 Error

(3) STATUS8
In STATUS8, the following bits are assigned as robot status.

 Bit number

Value when bit ON

1: ON-LINE mode
1: MANUAL mode
1: AUTO mode
0: Not used
1: SEQ mode
1: STOP signal ON / 0: STOP signal OFF
1: ES (Emergency Stop) / 0: Not ES
0: Not used

7 6 5 4 3 2 1 0

&H80 &H40 &H20&H10 &H8 &H4 &H2 &H1

• MANUAL mode is one of KEY-IN, TEACH and CHECK mode after
the auto/manual switch on the controller is selected to MANUAL.

• See SEQ-SEQEND statement in Chapter 9 about SEQ mode.

• STOP signal represents DI(IN5) signal using in AUTO mode.

(4) STATUS9

4 Individual Functions

 4-16

In STATUS9, the following bits are assigned as robot status.

7 6 5 4 3 2 1 0

&H80 &H40 &H20 &H10 &H8 &H4 &H2 &H1

Bit number

Value when bit ON

1: Inside of Z axis zone (SAFTY ZONE)
1: Positioning completed
1: A-CAL completed
0: Not used
0: Not used
0: Not used
1: Command execution
0: Not used

• The bit of Z axis zone becomes “1” when the z axis is under the
following condition.

The value of the z axis is less than the value defined in
[RESPONSE]-[RESPONSE]-[SAFE.ZONE] of System Parameter of
a robot.

• The bit of command execution becomes “1” while a robot is
executing the command received by the communication.

 STATUS(n) are equivalent to STATUSn.
e.g.) STATUS(8)

 “n” of STATUSn can be specified by the indirect expression such as a
formula, variable or reserved memory. But in this case, parentheses are
necessary for “n”.
e.g.) STATUS(MD5) --- STATUS with the index number of MD5 value.

4.2.9 HERE
HERE is the reserved memory of robot (HNC).

Ref function has to be used to access HERE. And Ref function has to be already
opened to connect with HNC.
Sample)
 Open “com1:4800,E,7,1” as #fno%
 :
 P0 = Ref(#fno%[rno:1],HERE)

HERE is the read-only memory which holds the current position of a robot. The
each axis data of the current position cannot be accessed directly. Generally, a
program reads HERE to P memory in STP by Ref function and then accesses it.

P0 = Ref(#fno%[rno:1], HERE) ‘Read current robot #1 position to
P0

Position data read by HERE does not contain M data, F code and S code. After
the above sample program is executed, M data, F code and S code of P0 remains
the last value.

! Note

! Note

! Note

4 Individual Functions

 4-17

After read position data to STP Pn, a program can access or change an element
of position data using the following format. (See “4.2.5 P and Its Structure”.)

X axis data PXn
Y axis data PYn
Z axis data PZn
W axis data PWn
R axis data PRn
C axis data PCn
Arm direction PARMn
M data Not read by HERE

Last data before read
F code Not read by HERE

Last data before read
S code Not read by HERE

Last data before read
Coordinate type Cannot access

4.2.10 EXPARA
EXPARA is the reserved memory of robot (HNC).

Ref function has to be used to access HERE. And Ref function has to be already
opened to connect with HNC.
Sample)
 Open “com1:4800,E,7,1” as #fno%
 :
 para% = Ref(#fno%[rno:1],EXPARA10)

Using EXPARA, a program can read or write an expanded parameter of a robot.
Expanded parameter is the extension of robot system data, by which special
motion and control is enabled.
Five hundred items for integer value, five hundred items for real value and one
hundred items for common parameter are prepared per a robot.
Refer to robot operation manual about details.

 EXPARA(n) are equivalent to EXPARAn.
e.g.) STATUS(8)

 “n” of EXPARAn can be specified by the indirect expression such as a
formula, variable or reserved memory. But in this case, parentheses are
necessary for “n”.
e.g.) EXPARA(MD5) --- EXPARA with the index number of MD5 value.

! Note

! Note

4 Individual Functions

 4-18

4.3 Timer
HrBasic supports the following four types of timer.

(1) TIM
TIM is general purpose timer.

(2) Delay statement
This stops job execution for a time.

(3) Calendar in STP
A program can reads or write current time and date by Time$ and
Date$ statement.

(4) Wait statement
Wait waits that the specified condition is true or the specified time
passes. And TimeOut function checks the time has passed or not.

See “9. HrBasic Command Reference” about (2), (3), (4).

4.3.1 TIM
TIM is timer which can count down time with the range of 0.000 to
2147483.647 sec by the precision of 1 msec accessed by TIM0 to TIM31.
TIM is independent from jobs. So, any job can use a TIMn with an arbitrary
number. Even if a job terminates by Job Off, the TIMn continues to count.
How to start a timer is to set the time as follows.

TIM0 = 10.5 ‘TIM0 starts to count down 10.5
sec.

The value of TIMn decreases to zero at 1 msec intervals. When the value
becomes zero as the time is up, the value of TIMn is immediately changed to -1
which means TRUE. Therefore, the following program can check TIMn is up.

If TIMn Then
 ‘Time-up
Else
 ‘Not time-up
EndIf

When the time is up, the value of TIM is changed to -1 without delay.
So, the example (1) runs correctly, but (2) incorrectly.
(1) If TIM5 Then GoTo *TIMEUP ‘Correctly
 If TIM5 =－1 Then GoTo * TIMEUP ‘Correctly
(2) If TIM5 = 0 Then GoTo * TIMEUP ‘Incorrectly

TIM can restart by setting a new value to a timer even if the time has not been
up. To set a new value can be executed both by own job or other job.

MD(3)=0 ‘Set zero to MD3.
TIM1=20 ‘Start TIM1 by 20 sec.
Wait TIM1=－1 or MD(3)=1 ‘Wait for TIM1 time-up or MD3

equals 1.
If MD(3)=1 then TIM1=30 ‘If MD(3) equals 1, restart TIM1 by

30 sec.

! Note

4 Individual Functions

 4-19

 TIM(n) are equivalent to TIMn.
e.g.) TIM(3)

 “n” of TIMn can be specified by the indirect expression such as a formula,
variable or reserved memory. But in this case, parentheses are necessary
for “n”.
e.g.) TIM(MD5)=60.00

--- Set 60.0s to TIM with the index number of MD5 value.

! Note

4 Individual Functions

 4-20

4.4 File and Communication
Generally, “File” is the logical unit which contains data, typically located in a
hard disk, CD or memory card. And a program can read or write it.
In addition to such “File”, in HrBasic, a peripheral device connected with STP
can be treated as “File” and a program receives or sends data as if a program
reads or writes “File”.
Files which HrBasic can operate are shown bellow.

(1) Data file in a hard disk, floppy disk and CD.

These files are supported only by Windows STP (WinSTP).

(2) Communication with a peripheral device
HrBasic can access a peripheral device communicated with STP such as
robot, motor driver, PC system, barcode reader and so on as the file
operation. HrBasic program send or receive data with such device as if it
reads or writes data.

4.4.1 How to Access Data File
How to access a data fie by HrBasic is described below.

(1) Open a data file
Open a data file using Open statement. Parameters of Open statement
are the followings.

• File name
Specify the file name to open.

• File mode
Specify file mode as one of “Append”, “Binary”, “Input”, “Output” or
“Random”.

• Access type
Specify file access type as one of “Read”, “Write” or “Read Write”.

• File number
Specify the number assigned for the opened file. After the file is
opened, this number has to be used to access the file. Available
number is 0 to 47.

The same file number is not available at the same time for the file access even
if the files are different and even if different jobs access the file.

(2) Read and write the data file
Read and write the data file using the file number specified to Open
statement.
For a data file access, the following commands are available.

• Print statement

• Input$ function

• Input statement

! Note

! Note

4 Individual Functions

 4-21

• Line Input statement

(3) Close the data file
Close the data file using the file number.

If the file number is omitted in Close statement, all opened files are closed
automatically.

4.4.2 How to Communicate with Peripheral Device

See “8. Robot Control by HrBasic” about communication with a robot.

Before a program accesses a data file, a program has to open it specifying the
file name. Before a program communicates with a peripheral device, a program
has to open it specifying the COM port name connected with the device and
specify the parameters of the communication. A COM port is a communication
port which has is available in STP and it has the COM port number from 0 to
14. Open statement can open a COM port.
Some HrBasic statement or function supports the following communication
protocols.

 Terminal protocol
This protocol is generally used for terminal mode and CR/LF is added to
the end of communication data.

TEXT CR LF

• CR : Carriage Return (&H0D)
• LF : Line Feed (&H0A)

 HRCS protocol
This protocol has the following communication format.

STX TEXT ETX
 LRC

• STX : Start of Text (&H02)
• ETX : End of Text (&H03)
• LRC : Longitudinal Redundancy Check

LRCi is a check code for communication data calculated by
exclusive OR of bytes in TEXT to ETX.

In case of the protocol except the above, the procedure for the protocol has to be
programmed using Print statement and Input$ function.
How to access a COM port by HrBasic is described below.

(1) Open a COM port
Open a COM port using Open statement. Parameters of Open statement
are the followings.

• COM port name
Specify the COM port name to use by the format of “COMn”. “n” is
the COM port number.

• Parameters

i See “Appendix B LRC Calculation”.

! Note

! Note

4 Individual Functions

 4-22

Specify the communication parameters such as communication
speed, parity, data length, stop bit and so on.

• File number
Specify the number assigned for the opened file. After the file is
opened, this number has to be used to access the file. Available
number is 0 to 47.

• Robot type
Specify a robot controller type for robot communication.

• Robot list
In case of the communication with a robot controller which has four
virtual robots, specify a robot number list for robot communication.

 The same COM port is not opened multiply at the same time even if
different file number is used.

 The same file number is not available at the same time for the file access
even if the files are different and even if different jobs access the file.

(2) Send or receive data to access the COM port
Send and receive data with the COM port using the file number specified
to Open statement. For communication, the following commands are
available.

• Print statement
• Input$ function
• Input statement
• Line input statement
• RchkHrcs statement
• WriteHrcs statement
• ReadHrcs statement

In addition, in case of the port connected with a robot, robot control
commands are available.

(3) Close the COM port
Close the COM port using the file number.

 If the file number is omitted in Close statement, all opened files are closed
automatically.

 RS232C COM numbers of Windows PC are automatically assigned
according to hardware implementation. In WinSTP, this assigned COM
has to be specified to Open statement.

Each COM of HAC or WinSTP has the different function as shown below.

! Note

! Note

4 Individual Functions

 4-23

< HAC COM Port Functions >
COM No. Interface Function

COM0 Inner memory
interface

Only for robot control. This port is connected with HNC
component through a memory interface.

COM1 RS232C
COM2 RS232C
COM3 RS232C
COM4 RS232C
COM5 RS232C
COM6 RS232C

General purpose port which can communicate with an
arbitrary external device or HNC.
Available speed: 1200 to 115200 bps

COM7 --- Not available.

COM8 RS232C HBDE debugging or general purpose port.
Available speed: 1200 to 115200 bps

COM9 RS232C Only for HBDE debugging. HrBasic cannot access this port.
Available speed: 1200 to 115200 bps

COM10 Ethernet 10BASE-T
COM11 --- Not available.
COM12 --- Not available.
COM13 --- Not available.
COM14 --- Not available.

< WinSTP COM Port Functions >

COM No. Interface Function

COM0 Inter-process
communication

Only for HBDE debugging. HrBasic cannot access this port.

COM1 RS232C
COM2 RS232C
COM3 RS232C
COM4 RS232C
COM5 RS232C
COM6 RS232C
COM7 RS232C
COM8 RS232C
COM9 RS232C

General purpose port which can communicate with an
arbitrary external device or HNC. To be available or not
depends on the hardware implementation.
Available speed: 1200 to 115200 bps

COM10 Ethernet
To be available or not depends on the hardware
implementation.
10BASE-T.

COM11 Inter-process
communication

COM12 Inter-process
communication

COM13 Inter-process
communication

COM14 Inter-process
communication

Windows application port. HrBasic in WinSTP can
communicates with other application in Windows.

4 Individual Functions

 4-24

4.5 Error Handling
In STP, multiple jobs run simultaneously. If an error occurs in a job, the job
stops at the error detected step. After an error occurs, a job is not restarted
automatically. To restart a job, it is necessary that other job program
terminates the stopped job by Job Off statement and then restarts the job by
Job Start statement, or that debugging environment can restart the stopped
job.
There are three types of “job error” i as follows.

(1) System error
This error is mainly caused by STP hardware trouble. After this error
occurs, the error procedure has to be executed according to the system
specification and then check the hardware.

(2) Illegal usage of HrBasic command
This error is caused by the illegal usage of statement, function or
variable. And this error has to be removed during the system
development.

(3) Communication error and robot error
This error is caused by trouble of communication or robot which may
occurs when the system is running. After this error occurs, the error
procedure has to be executed according to the system specification.

When these errors occur, without stopping a job, On Error GoTo statement is
available for an error procedure. On Error GoTo statement registers the entry
of the error handler to jump when a job error occurs. The error handler is the
program module which controls the error procedure.
If the error handler has been registered once, a program jumps to the error
handler immediately when a job error occurs.

On Error GoTo statement is not a declaration but executable anywhere and
anytime in a job. In the following case, the different error handler is used
according to the error state.

If err.flag% = 0 Then
 On Error GoTo *ERR.HANDLER.1

Else
 On Error GoTo *ERR.HANDLER.2

EndIf
And the following program deletes the registered error handler.
 On Error GoTo 0
After this step, a program does not jump to the error handler even if a job error
occurs.

In an error handler, the current job error code is referred by reserved variable
Err and Resume statement terminates the error handler to go back to a normal
program.

Reserved variable Err contains code of the job error which has occurred.

i See “Appendix D Running Job Errors”.

! Note

! Note

4 Individual Functions

 4-25

A job error occurs in the error handler, a program stops at the error step not to
execute the error handler again.
To recover this state, other job has to terminate the job by Job Off statement
and then restart the job by Job Start statement.

You can see “3. Development Guideline of HrBasic Program” about the sample
of error handling
In the sample, Robot job detects a job error and Mode job transfers to error
mode.

! Note

5 Syntax Rules

 5-1

5. Syntax Rules

5.1 Sentence
Sentence is the smallest unit of program. A sentence consists of a statement or
a substitution. One sentence corresponds to one executable program step and
STP interprets program steps to execute one by one.

< Statement example >

On Error GoTo *ERR.HANDLER ‘On Error GoTo statement
Move #fno%, PM(100) ‘Move statement
If y% = 0 Then ‘If -- Then statement
For i%=1 To 10 ‘For statement

< Substitution example >
z.axis! = z.axis! + 10.0!
a$ = Mid$(“abcd”, 1, 1)

5.2 Line
A line consists of one or more sentences. A line terminates with a
carriage-return character or an end-of -file.
Maximum 254 bytes of characters except a carriage-return or end-of-file are
able to code in one line.
Note) End-of-file is the code that indicates the end of file.
One line may consist of multiple sentences separated by colon “ : ”. This line is
called “multi-statements”, several sentences can be written in one line.
< Line example >

Move #fno%, PM(100)
< Multi-statement example >

x.axis! = 10.0: y.axis! = 20.0

5.3 Statement
A statement contains one of the following formats.

Command Arguments Sub-command
Command (Arguments) Sub-command

It is separated to Command, Argument and Sub-command by Blank space or
tab.
Command is the reserved string and it represents the name of embedded
procedure.
An argument is separated each other by comma “ , ” and specified as a constant,
variable, expression or label. It may be omitted for some commands.
For some commands, Sub-command may be added to specify the detail
parameter.
A statement executes an embedded procedure using the specified parameters.

Sentence Statement

Substitution

5 Syntax Rules

 5-2

< Statement example >
Move #fno%, PM(100) ‘Move statement

5.4 Function
A function contains the following format.

Command (Arguments)
It is separated to Command, Argument and Sub-command by Blank space or
tab.
Command is the reserved string and it represents the name of embedded
procedure.
An argument is separated each other by comma “ , ” and specified as a constant,
variable, expression or label. It may be omitted for some commands.
A function executes an embedded procedure using the specified parameters and
returns the value to a program as the result of procedure. So, a function is the
statement which has the returned value.
The returned value is used in a substitution, or as a part of an expression.
< Function example >

a$ = Mid$(“abcd”, 1, 1) ‘Mid$ function for substitution
If Eof(fno%) Then ‘Eof function for expression
y! = a! + (b! * c! / Sin(x!)) ‘Sin function for expression

5.5 Comment
Comment is phrases as the notation of a program and it is effective in
understanding a program.
A part of one line after Rem statement or an apostrophe “ ’ ” is regarded as
comment.
Comment is neglected for compilation and its content is never checked.
< Comment example >

err.flag% = 0 ‘This is comment in this line.

5.6 Label
HrBasic program does not have a line number to specify the line, but label is
available instead of it. A Label is a mark of the line specified in a program.
Generally, a label is used for the following purposes.

• Destination to jump by GoTo statement
• Entry name of subroutinei

In HrBasic, a label has to be written at the top of one line as the following
format.

*Label-Name
There are the following rules for using a label.

 The top of label name has to be an asterisk “ * “.

 Execept asterisk, the first character of label name has to be alphabetic.

 Execept asterisk, available characters in label name are alphabetic,
numerical or period “ . “, regardless of upper or lower case.

i See “7. Structured Programming of HrBasic Language”.

5 Syntax Rules

 5-3

 Label name after asterisk cannot be the reserved name (e.g. *MOVE).
But, a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.

 Label name definition has to be written at the top of one line.
Example#1) *LOOP i% = 1
Example#2) *LOOP

i% = 1
Example#3) *LOOP i%=1: j%=1
Example#4) *LOOP: i%=1: j%=1

 “Syntax error” occurs when compiled if a program neglects the
above-mentioned rules.

 In other job program, the same label name can be used. But if multiple
usage of the label name is founded in one job, “Duplicate label” error
occurs when compiled.

5.7 Header File
A header file is a text file which is read into a source program when a source
program is compiled. Define statements can be written in a header file. It
defines the alias of description such as the system constant in a source program.
File extension of a header file is “.hed”.
To define various constants in a header file with centralization reduces the cost
of program modification and prevents the decrement of the program quality
after modification.i
In a job program file, Include statement has to be described as the following
format.

Include "Header-file-name"
Generally, Include statement is written at the top of a job program. In the
typical usage, Include statement is written after Job Name statement.
< Include statement example >

Job Name "Test"
Include "Sample.hed"

5.8 Define Statement
HrBasic compiler replaces the string in a source program with the defined
string in a header file.
Define statement has the following format and has to be written in a header
file.

Define String-A String-B
HrBasic compiler replaces String-A in a source program with String-B.

Define statement is written only in a header file.

i See “3. Syntax Rules”.

! Note

! Note

5 Syntax Rules

 5-4

Sample program is shown below.

 Header file
'IO.hed
'***************************************
' Remote I/O
'***************************************
Define O.BLUE 1 'Signal tower blue lamp
Define O.RED 2 ' Signal tower red lamp
Define O.BUZZER 5 'Buzzer on

 Job program
'Init.bas
Job Name "Init" 'Job name
Include "IO.hed" 'Header file

Global g.InitEnd% 'Global variables
Global g.Mode%

g.InitEnd% = 0 'Initialize global
g.Mode% = 0

'Initialize output
OUTB(O.BLUE) = 0 'Replace O.BLUE with 1
OUTB(O.RED) = 0 'Replace O.RED with 2
OUTB(O.BUZZER) = 0 'Replace O.BUZZER with 5

g.InitEnd% = 1 'Initialize completed

Job Off 'Terminate job

5.9 Character Set
Available character is shown below.

• Alphabet in upper case

• Alphabet in lower case

• Numeral

• Special symbols
HrBasic treats words regardless of both cases except the special cases.

5.10 Special Symbols
HrBasic language uses a symbol for an operator such as arithmetic operator (+,
-, *, /, ^), comparing operator (=, <, >).
Moreover there are the following usage of a symbol.

(1) Colon “ : “
It is used to separate the sentences of multi-statement as a terminator.
< Example >

A=B+C : X=A

(2) Comma “ , “
It is used to separate parameters.
< Example >

Move #1, ptp, PM0

5 Syntax Rules

 5-5

(3) Semicolon “ ; “
It is used to separate parameters of Print statement.
< Example >

Print #1,”A=“;A

(4) Apostrophe “ ‘ “
It is used as the start of comment.

(5) Asterisk “ * “
It is used as the start of label.

(6) Blank space or tab
It is used for character constant or separator in a sentence.

6 Elements of Language

 6-1

6. Elements of Language

6.1 Literal (Constant)
Direct data coded in a program such as 100, 3.14 or “Hollow World” is called
“literal” or “constant”. In HrBasic, “literal” and “constant” have the same
meanings.
HrBasic language can treat the following literals.

Literal

Character
literal

Integer type

Real number type

Decimal type
Octal type
Hexadecimal type

Single precision type
Double precision type

Numerical
Literal

6.1.1 Character Literal
Character literal is the string of 255 or less bytes which consists of alphabets,
numerals and symbols enclosed by double quotations marks(“). The double
quotation marks can not be expressed directly in the character literal. If double
quotation marks are required in the character literal, express them as shown
the example below.
< Example >

• ”Good Morning”

• ”123456789”

• CHR$(&H22) + ”1234” + CHR$(&H22)

6.1.2 Numerical Literal
Numerical literals contain integer type and real number type and each type
has positive, negative or zero. Minus symbol must be put the top of negative
numbers, but plus symbol can be omitted in case of positive numbers.

6.1.3 Integer Type Literal
Integer type literals contain the following expressions. And each expression
contains the short integer (16 bits) type and the long integer (32 bits) type.

(1) Decimal type
Decimal type literal begins with numerical character. Decimal point
cannot be used. The zero of the top of literal is neglected for the value.
Short integer type literal can expressed the value of -32768 through
+32767 with percent mark “%”.
Long integer type literal can expressed the value of -2147483648 through
+2147483647 with ampersand mark “&”.
< Example >

• Short integer type
32767
-123%

6 Elements of Language

 6-2

32767%
• Long integer type

2147483647
32767&
-123&
2147483647&

(2) Octal type
Octal type literal begins with “&O” or “&” and numbers of 0 through 7
are followed.
If number of 8 or 9 appears in octal type literal, an error occurs when
compiled.
The following table shows the range of the value.

• Short integer type value
A percent mark “%” can be added at the end of a literal.
Decimal Octal Binary

32767 &O77777 0111 1111 1111 1111
32766 &O77776 0111 1111 1111 1110

: : :
2 &O00002 0000 0000 0000 0010
1 &O00001 0000 0000 0000 0001
0 &O00000 0000 0000 0000 0000

-1 &O177777 1111 1111 1111 1111
-2 &O177776 1111 1111 1111 1110

: : :
-32767 &O100001 1000 0000 0000 0001
-32768 &O100000 1000 0000 0000 0000

• Long integer type value
An ampersand mark “&” can be added at the end of a literal.

Decimal Octal Binary
2147483647 &O17777777777 0111 1111 1111 1111 1111 1111 1111 1111
2147483646 &O17777777776 0111 1111 1111 1111 1111 1111 1111 1110

: : :
2 &O10000000002 0000 0000 0000 0000 0000 0000 0000 0010
1 &O10000000001 0000 0000 0000 0000 0000 0000 0000 0001
0 &O10000000000 0000 0000 0000 0000 0000 0000 0000 0000

-1 &O37777777777 1111 1111 1111 1111 1111 1111 1111 1111
-2 &O37777777776 1111 1111 1111 1111 1111 1111 1111 1110

: : :
-2147483647 &O30000000001 1000 0000 0000 0000 0000 0000 0000 0001
-2147483648 &O30000000000 1000 0000 0000 0000 0000 0000 0000 0000
< Example >

• Short integer type
&12345
&O7777%

• Long integer type
&O177777777
&12345&
&177777777&

(3) Hexadecimal type
Hexadecimal type literal begins with “&H” and numbers of 0 through 9,
or hexadecimal numbers of “a” or “A” through “f” or “F” are followed. “a”
or “A” to “f” or “F” corresponds with decimal value of 10 to 15.

6 Elements of Language

 6-3

The following table shows the range of the value.

• Short integer type value
A percent mark “%” can be added at the end of a literal.
Decimal Octal Binary

32767 &H7FFF 0111 1111 1111 1111
32766 &H7FFE 0111 1111 1111 1110

: : :
2 &H0002 0000 0000 0000 0010
1 &H0001 0000 0000 0000 0001
0 &H0000 0000 0000 0000 0000

-1 &HFFFF 1111 1111 1111 1111
-2 &HFFFE 1111 1111 1111 1110

: : :
-32767 &H8001 1000 0000 0000 0001
-32768 &H8000 1000 0000 0000 0000

• Long integer type value
An ampersand mark “&” can be added at the end of a literal.

Decimal Octal Binary
2147483647 &H7FFFFFFF 0111 1111 1111 1111 1111 1111 1111 1111
2147483646 &H7FFFFFFE 0111 1111 1111 1111 1111 1111 1111 1110

: : :
2 &H00000002 0000 0000 0000 0000 0000 0000 0000 0010
1 &H00000001 0000 0000 0000 0000 0000 0000 0000 0001
0 &H00000000 0000 0000 0000 0000 0000 0000 0000 0000

-1 &HFFFFFFFF 1111 1111 1111 1111 1111 1111 1111 1111
-2 &HFFFFFFFE 1111 1111 1111 1111 1111 1111 1111 1110

: : :
-2147483647 &H80000001 1000 0000 0000 0000 0000 0000 0000 0001
-2147483648 &H80000000 1000 0000 0000 0000 0000 0000 0000 0000
< Example >

• Short integer type
&H12345
&HFFF%

• Long integer type
&H7FFFFFFE
&H12345&
&H7FFFFE &

The output of Print statement has always the decimal format even if the octal
or hexadecimal type literal is specified to Print.

6.1.4 Real Number Type Literal
Real number type literal contain single precision type and double precision
type.

(1) Single precision type
The value of single precision type literal has 7 significant figures. Single
precision type literal can express the value of -3.402823E+38 through
3.402823E+38.
One of the following conditions decides a literal single precision type.

• The value has the above-mentioned range with 7 or less significant
figures.

! Note

6 Elements of Language

 6-4

• An exclamation mark “!” is added at the end of a literal.
< Example >

1.23
-7.09E-06
3525.68
3.14!

(2) Double precision type
The value of double precision type literal has 16 significant figures.
Double precision type literal can express the value of
-1.7976931348623158E+308 through 1.7976931348623158E+308.
One of the following conditions decides a literal is double precision type.

• The value has the above-mentioned range with 8 or more
significant figures.

• A number sign “#” is added at the end of a literal.
< Example >

1234567890
-1.09432E-06+0.3141592653E+01
56789.0#
8657036.1543976

6 Elements of Language

 6-5

6.2 Variable
A variable is a memory area which keeps the calculated value. A program
reads or writes the value in the memory area to specify the variable name that
consists of alphabets and numerals.
Assignment from variable name to memory area is automatically done when a
program is compiled.
The value of variable is changed by substitution and a program can refer to the
value at any time.
When STP starts or a program is downloaded to STP, all variables are cleared
by zero.

6.2.1 Variable Name and Type Declaration Character
Variable name has the following rules.

 It has to consist of alphabets, numerals and period “ . “.

 It has to begin with alphabets.

 It has to be maximum 16 bytes including type declaration character.
The following variables are compiled to two different variables.

A1234560
A1234568

Variable name cannot be the reserved namei, but a part of variable name can
be the reserved name.
It is not cared which case of alphabets variable name has.
In case that the two variable names equal, if type declaration characters differ,
the compiler distinguishes the two variables. Type declaration character is
added to the end of variable name.
If type declaration character is omitted, the compiler decides that the variable
is single precision real-number type as if “ ! “ is added.

These differs, but A and A! are same.

Type declaration character

% Integer or 16bits integer type (2bytes)
& Long integer or 32bits integer type (4bytes)
! Single precision real-number type (4bytes)
Double precision real-number type (8bytes)
$ String type (max 255bytes)

A
A%
A&
A#
A$

To substitute a literal for a variable, if the variable type differs from the literal
type, there is the case that an error occurs when compiled.
< OK >
 A% = 32767
 A% = 222%
 A& = 123
< Compiling error >
 A% = 32768 ‘Overflow for variable
 A% = 32768% ‘Overflow of literal

i Reserved name is keyword of HrBasic language, such as name of statement (e.g. Mid, If), name
of function (e.g. Len, Abs), and operator (e.g. Or, Mod).

! Note

6 Elements of Language

 6-6

 A% = 3272& ‘Different type
 A% = “cat” ‘Different type
See “6.3 Type conversion” about type conversion in substitution.

6.2.2 Array Variable
In HrBasic, continuous memory areas can be assigned to one variable name.
This structured variable is called array variable.
One memory area in array variable is called element. Each element can be
indicated by integer number called index.
Array variable has to be declared by Dim statement with specifying the volume
of array.

Dim Array-variable-name(max-index-number)
The volume of array can be specified by the maximum number of index with
parentheses.
The following example shows the array which consists of seven elements with
index numbers, zero through six.

Dim a%(6)
Element Memory area

a%(0) 2 bytes
a%(1) 2 bytes
a%(2) 2 bytes
a%(3) 2 bytes
a%(4) 2 bytes
a%(5) 2 bytes
A%(6) 2 bytes

Maximum three dimensions of array are available in HrBasic.
The following example shows the structure of two dimensions array.

Dim x&(2,2)
Element Memory area
x&(0, 0) 4 bytes
x&(0, 1) 4 bytes
x&(0, 2) 4 bytes
x&(1, 0) 4 bytes
x&(1, 1) 4 bytes
x&(1, 2) 4 bytes
x&(2, 0) 4 bytes
x&(2, 1) 4 bytes
x&(2, 2) 4 bytes

The following example shows the structure of three dimensions array.
Dim y#(2,2,2)

Element Memory area
y#(0, 0, 0) 8 bytes
y#(0, 0, 1) 8 bytes
y#(0, 0, 2) 8 bytes
y#(0, 1, 0) 8 bytes
y#(0, 1, 1) 8 bytes
y#(0, 1, 2) 8 bytes
y#(0, 2, 0) 8 bytes
y#(0, 2, 1) 8 bytes
y#(0, 2, 2) 8 bytes
y#(1, 0, 0) 8 bytes

6 Elements of Language

 6-7

y#(1, 0, 1) 8 bytes
y#(1, 0, 2) 8 bytes
y#(1, 1, 0) 8 bytes
y#(1, 1, 1) 8 bytes
y#(1, 1, 2) 8 bytes
y#(1, 2, 0) 8 bytes
y#(1, 2, 1) 8 bytes
y#(1, 2, 2) 8 bytes
y#(2, 0, 0) 8 bytes
y#(2, 0, 1) 8 bytes
y#(2, 0, 2) 8 bytes
y#(2, 1, 0) 8 bytes
y#(2, 1, 1) 8 bytes
y#(2, 1, 2) 8 bytes
y#(2, 2, 0) 8 bytes
y#(2, 2, 1) 8 bytes
y#(2, 2, 2) 8 bytes

The following example shows number of elements for each dimension.
< Example >

Dim a%(10) ‘One dimension --- 11 elements
Dim aa&(10,50) ‘Two dimensions --- 11x51=561 elements
Dim aaa$(2,5,3) ‘Three dimensions --- 3x6x4=72 elements

Memory size of variables in STP is 1 Mbytes. When a program is downloaded,
the area that all variables use is checked whether it exceeds.

The following expression can access an array element

Array-variable-name(index-to-access).
Literal, reserved memory, variable or expression is available for the index to
access an array element.
< Example >

If a%(i%+1) = 10 Then

6.2.3 Local Variable, Global Variable and Network Global
Variable

In HrBasic, variables are categorized into three types, local variable, global
variable and network global variable by scope in which a variable is available.
Each type is described below.

Maximum 500 local variables are available per one job.
Maximum 500 global variables are available in all jobs.
Maximum 100 network global variables are available in all jobs.

(1) Local variable
A variable that can be accessed only in a job is called local variable. It is
not necessary to declare local variables and the compiler automatically
assign the memory area of used variables by analyzing a program.
A local variable in a job is independent of a variable in other job. If there
is the local variable which has the same name in other job, there is no

! Note

! Note

6 Elements of Language

 6-8

influence with each other. So, a program in a job cannot read or write a
local variable in the other job.
In the following example, the usage of portno% is restricted in its own
job.

Job Name “Port1”
Include “loader.hed”

portno%=1
 :
 :

Job Name “Port2”
Include “loader.hed”

portno%=2
 :
 :

(2) Global variable
A variable that can be shared by multiple jobs is called global variable. A
global variable has to be declared by Global statement.
A global variable in a job shares the memory area with other jobs that
declare the same global variable name. The jobs that declare a global
variable can read or write it at any time.
If an array variable is used as global, the array does not need to be
declared by Dim statement, but has to be declared by Global statement.

Global g.Array%(10, 20, 30)
When a global variable is declared in some jobs, if the same name
variable is not declared as global in a job, the variable is treated as local.
In the following example, all jobs access g.Mode%(2) as global. And Port1
and Port2 job accesses Err.no% as global, but Mode job accesses it as
local.

Job Name “Port2”
Include “loader.hed”

Global g.Mode%(2)
Global Err.no%
portno%=2
 :
 g.Mode%(portno%)=1
 :

Job Name “Port1”
Include “loader.hed”

Global g.Mode%(2)
Global Err.no%
portno%=1
 :
 g.Mode%(portno%)=1
 :

Job Name “Mode”
Include “loader.hed”

Global g.Mode%(2)
 :
 If g.Mode%(2)=3 Then
 Err.no%=1
 EndIf
 :

For the purpose of increasing the maintenancebility of program, it is
recommended that the same name is not used for a local variable and a global
variable.
And it is recommended to use the variable name which can clearly distinguish
a local variable or a global variable.

(3) Network global variable
STP supports one of the following three fieldbus.

a) InterBus
b) PROFIBUS
c) DeviceNet

Remote I/O of STP is realized by the fieldbus and STP can communicate
with each other using the fieldbus network.
Note) This STP communication is not supported for DeviceNet yet.

!
Guideline for
Programming

6 Elements of Language

 6-9

The STP fieldbus communication requires defining the network definition by
HBDE.
Refer to HBDE help or “HBDE Operation Manual” about details.

A variable that can be shared by multiple STPs communicated with each
other by fieldbus network is called network global variable. A network
global variable has to be declared by DimNet statement.
A global variable in a STP job shares the content with other jobs which
declares the same name of a network global variable in a different STP.
The jobs which declare a network global variable can read or write it at
any time.
If an array variable is used as network global, the array does not need to
be declared by Dim statement, but has to be declared by DimNet
statement.

DimNet ng.Array%(10, 20, 30)
When a network global variable is declared in some jobs, if the same
name variable is not declared as network global in a job, the variable is
treated as local.
In the following example, STP Station#1 and Station#2 are connected
with each other by fieldbus network. Network global variable,
ng.StpMode%(4) is declared in Station#1 Mode job and Station#2 Mode
job. And these jobs write the value to the network global variable.

! Note

6 Elements of Language

 6-10

Job Name “Main”
Include “sbake.hed”

Global g.Mode%
Global g.Err.no%

*Loop
 Select Case g.Mode%
 Case MANUAL
 :
 End Select
 GoTo *Loop
 :

Job Name “Mode”
Include “sbake.hed”

DimNet ng.StpMode%(4)
Global G.Mode%
no%=3
g.Mode%=1

*Loop
 ng.StpMode%(no%)=g.Mode%
 :
 GoTo *Loop
 :

Station #2

Job Name “Main”
Include “spin.hed”

Global g.Mode%
Global g.Err.no%

*Loop
 Select Case g.Mode%
 Case MANUAL
 :
 End Select
 GoTo *Loop
 :

Job Name “Mode”
Include “spin.hed”

DimNet ng.StpMode%(4)
Global g.Mode%
no%=2
g.Mode%=1

*Loop
 ng.StpMode%(no%)=g.Mode%
 :
 GoTo *Loop
 :

Station #1

Connected by fieldbus network

For the purpose of increasing the maintenancebility of program, it is
recommended that the same name is not used for a local variable and a
network global variable.
And it is recommended to use the variable name which can clearly distinguish
a local variable or a network global variable.

!
Guideline for
Programming

6 Elements of Language

 6-11

6.3 Type Conversion
In HrBasic, numerical data can be converted to other type. But the conversion
between a string type and a numerical type is not available.

(1) When the numeric data of some type is substituted for numeric
variable of other type, the value is converted to the type declared by its
variable name.

Example)
abc% = 1.234 ‘1 is substituted for abc%

(2) In case of the operation between different precision, the value is
converted to higher precision at operation. 10# /3 is operated as 10# /
3#.

Example)
a# = 10# / 3 ‘3.333333333333333 is substituted for a#
b# = 10# / 3# ‘3.333333333333333 is substituted for b#

(3) In case of logical operation, all numerical values are converted to
integers and the results are shown by integers.

Example)
a! = 12.34 ’12.34 is substituted for a!
b! = Not a! ‘-13 is substituted for b!

(4) In case of conversion from real number to integer, the value under
decimal point is rounded to the nearest whole number. In this case, if
the value is over the integer type, the error is indicated.

Example)
a% = 34.4 ’34 is substituted for a%
b% = 34.5 ’35 is substituted for b%
a# = 1.234E+07 ‘1.234E+07 is substituted for a#
c% = a# ‘Overflow error at this step

(5) When the double precision variable is substituted for the single
precision variable, the value is expressed as significant 7 columns. The
precision variable is 7digits and the absolute value of the error against
the original value is less than 5.96E-8.

Example)
a# = 1.23456789# ‘1.23456789 is substituted for a#
b! = a# ‘1.234567 is substituted for b!

When the operation is mixed with the double precision variable (or
constant) and the single precision variable (or constant) or the value of
the single precision is substituted for the double precision variable, the
conversion error happens at the digits after significant columns.
Example)

a) The operation between different precision (Conversion error happens
in the operation result)

Bad example a# = 1.41421356#+0.12
Good example a# = 1.41421356#+0.12#

b) When lower precision value is substituted for higher precision
Bad example a# = 3.1415
Good example a# = 3.1415#

6 Elements of Language

 6-12

6.4 Operator
HrBasic has the following types of operator.

(1) Arithmetic operator

(2) Relational operator

(3) Logical operator

(4) Character string operator

6.4.1 Arithmetic Operator
Arithmetic operator is used for the arithmetic calculation and there are the
following operators in HrBasic.

Operator Operation Example Explanation
+ Plus +A Same as A
- Minus -A Minus A
^ Exponent 3^4 3 to 4th power
* Multiplication 2 * A 2 multiplied by A
/ Division 3 / 5 3 divided by 5
+ Addition A + 3 A plus 3
- Subtraction A－B A minus B

mod Remainder 17 mod 5 The remainder of 17 divided
by 5. The result is 2.

In case of changing priority i , use parentheses. Operator enclosed by
parentheses is processed earlier than other operation. In parentheses,
operation is executed in the sequence.

The programming sample is shown below.

 Arithmetic expression HrBasic expression

1) YX +2 2 * X + Y

2) 2+
Y
X X / Y + 2

3)
2

YX + (X+Y) / 2

4) 122 ++ XX X^2 + 2*X +1

5) 2YX X^(Y^2)

6) 2)(YX X^Y^2

7))(XY − Y* -X

The remarks of operation are described below.

(1) Division by zero
When the expression is divided by 0, the maximum number processed
internally is substituted as quotient and it is processed as error. In case
of minus exponentiation to 0, the process is the same as the division by 0.

i See “6.5.1 Priority of Operations”.

! Note

6 Elements of Language

 6-13

Example)
a% = 2 / 0
b! = 0 ^ -3

(2) Overflow
When the result of operation or substitution is over the allowed range,
overflow occurs. When the overflow happens, overflow error is output and
the maximum number is given as result and it is processed as error.
Example)

a% = 32000 + 10000
b! = 3 ^ 1000

(3) Exponent
Exponent operation can not be calculated by negative real number.
(positive number or negative integer is possible.)
Example)

a! = b! ^ -1.23

6.4.2 Relational Operator
Relational operation is to compare two numerals. The result is given by true
(-1) or falsehood (0) and used to branch the program flow conditionally. (See If
statement or Select statement.)
Relational operators are listed below.
Operator Operation Example Explanation

<= Smaller or
equal

A <= B If A is smaller than B or equal, the
result is true. If A is larger than B, it is
false.

>= Larger or
equal

A >= B If A is larger than B or equal, the result
is true. If A is smaller than B, it is false.

< Smaller A < B If A is smaller than B, the result is true.
If A is larger than B or equal, it is false.

> Larger A > B If A is larger than B, the result is true. If
A is smaller than B or equal, it is false.

<> Not equal A <> B If A is not equal to B, the result is true.
If A is equal to B, it is false.

= Equal A = B If A is equal to B, the result is true. If A
is not equal to B, it is false.

Relational operators have the two cases of numerical comparison and character
string comparison.

 Note that “=” is used for substitution also.
 Comparison between string and numeral is not allowed.

(1) Comparison of numerals
In case of comparison of different precision numerals, the result is
calculated by conversion to the most precise type of both sides.
Example#1)

a% = 1
If a% < 1.21! Then ‘Comparison of 1.00! and 1.21!

Example#2)
a! = 1.23!
b# = 2.3345#
If a! < b# Then ‘Comparison of 1.2300# and 2.3345#

! Note

6 Elements of Language

 6-14

Relation of numerical type and precision is shown below.
Type

declaration
Type name Precision

Double precision real
! Single precision real
& Long integer
% Integer

Most precise

Least precise

(2) Comparison of character strings
Character strings of both sides are compared from the top of strings by
comparison of each character one by one.
If the lengths of two strings and all characters are same, two strings are
equal.
If the lengths of two strings are same but characters of them are not
same, the string that contains a bigger character code is bigger then
another string.
If the lengths of two strings are not same, the longer string is bigger than
another string.

String comparison is executed to compare the value of ASCII code of a
character including space or tab.

6.4.3 Logical Operator
Logical operator is used for logical calculation such as logical operation in the
condition or bit operation in the expression.

(1) Logical operation in the condition
In the condition, a logical operator returns the result of true (-1) or false
(0) to calculate the one or two logical value.
The program flow can be controlled by If statement to check the result of
a logical operator.
In the condition, the following operators can be available.

Operator Operation Example Explanation
not Not

(Negation)
not (A=B) If not (A=B), the result is true. If

(A=B), the result is false.
and And

(Logical
multiplication)

(A=B) and (C=D) If (A=B) and (C=D), the result is
true. If not (A=B) or not (C=D), the
result is false.

or Inclusive or
(Logical addition)

(A=B) or (C=D) If (A=B) or (C=D), the result is true.
If not (A=B) and not (C=B), the
result is false.

xor Exclusive or
(Logical
exclusion)

(A=B) xor (C=D) If (A=B) and not (C=D), the result is
true. If not (A=B) and (C=D), the
result is true. If (A=B) and (C=D),
the result is false. If not (A=B) and
not (C=D), the result is false.

eqv Logical
equivalence

(A=B) eqv (C=D) If (A=B) and not (C=D), the result is
false. If not (A=B) and (C=D), the
result is false. If (A=B) and (C=D),
the result is true. If not (A=B) and
not (C=D), the result is true.

! Note

6 Elements of Language

 6-15

Operator Operation Example Explanation
imp Logical

implication
(A=B) imp (C=D) If (A=B) and not (C=D), the result is

false. In other case, the result is
true.

(2) Bit operation
In bit operation, the following operators are available.

Operator Operation Truth table

not Not
(Negation)

X not X
1 0
0 1

and
And
(Logical
multiplication)

X Y X and Y
1 1 1
1 0 0
0 1 0
0 0 0

or
Inclusive or
(Logical
addition)

X Y X or Y
1 1 1
1 0 1
0 1 1
0 0 0

xor
Exclusive or
(Logical
exclusion)

 X Y X xor Y
1 1 0
1 0 1
0 1 1
0 0 0

eqv Logical
equivalence

 X Y X eqv Y
1 1 1
1 0 0
0 1 0
0 0 1

imp Logical
implication

 X Y X imp Y
1 1 1
1 0 0
0 1 1
0 0 1

In bit operation, value type for logical operator has to be integer or long
integer. The following table shows values of decimal, hexadecimal and
binary expression of each type
< Integer >

Decimal Hexadecimal Binary
32767 &H7FFF 0111 1111 1111 1111
32766 &H7FFE 0111 1111 1111 1110

: : :
2 &H0002 0000 0000 0000 0010
1 &H0001 0000 0000 0000 0001
0 &H0000 0000 0000 0000 0000

-1 &HFFFF 1111 1111 1111 1111
-2 &HFFFE 1111 1111 1111 1110

: : :
－32767 &H8001 1000 0000 0000 0001
－32768 &H8000 1000 0000 0000 0000

< Long integer >

6 Elements of Language

 6-16

Decimal Hexadecimal Binary
2147483647 &H7FFFFFFF 0111 1111 1111 1111 1111 1111 1111 1111
2147483646 &H7FFFFFFE 0111 1111 1111 1111 1111 1111 1111 1110

: : :
2 &H00000002 0000 0000 0000 0000 0000 0000 0000 0010
1 &H00000001 0000 0000 0000 0000 0000 0000 0000 0001
0 &H00000000 0000 0000 0000 0000 0000 0000 0000 0000

-1 &HFFFFFFFF 1111 1111 1111 1111 1111 1111 1111 1111
-2 &HFFFFFFFE 1111 1111 1111 1111 1111 1111 1111 1110

: : :
-2147483647 &H80000001 1000 0000 0000 0000 0000 0000 0000 0001
-2147483648 &H80000000 1000 0000 0000 0000 0000 0000 0000 0000
In logical bit operation, binary bits of each value are operated according
to the truth table. As the result, for example, “and” operator can clear
some bits and “or” operator can mix some bits.
Examples of logical bit operation are shown below.

Logical bit operation Result Explanation

63 and 8 8

 63 = (111111)2
 8 = (001000)2
 63 and 8 = (001000)2 = 8
Therefore, 63 and 8 = 8

-1 and 8 8

 -1 = (1111111111111111)2
 8 = (0000000000001000)2
 -1 and 8 = (0000000000001000)2 = 8
Therefore, -1 and 8 = 8

12 or 11 15

 12 = (1100)2
 11 = (1011)2
 12 or 11 = (1111)2 = 15
Therefore, 12 or 11= 15

32767 or -32768 -1

 32767= (0111111111111111)2
 -32768 = (1000000000000000)2
 32767 or -32768 = (1111111111111111)2 =-1
Therefore, 32767 or -32768 =-1

12 xor 11 7

 12 = (1100)2
 11 = (1011)2
 12 xor 11 = (0111)2 = 7
Therefore, 12 xor 11= 7

10 xor 10 0

 10 = (1010)2
 10 = (1010)2
 -1 and 8 = (0000)2 = 0
Therefore, 63 and 8 = 8

not X-1 -X

If X = 10,
 10 = (0000000000001010)2
 10-1 = (0000000000001001)2
 not 10 = (1111111111110110)2 = -10
Therefore, not 10-1 = -10

6.4.4 Character string operator
Character string “+” operator joins a string to another.
Example)

a$ = “HIRATA” : b$ = “INDUSTRIAL” : c$ = “ROBOT”
d$ = a$ + ”#” + b$ + ”#” + c$
--- “HIRATA#INDUSTRIAL#ROBOT” is substituted for d$.

6 Elements of Language

 6-17

6.4.5 Priority of Operations
Priority of operations is show below. Calculation is executed in order of this
priority.

Priority Operator
High ()

Exponent (^)
Plus sign (+), Minus sign (-)
*, /
mod
+, －
Relational operators (<=, >=, <, >, <>, =)
not
and

 or
Low xor, eqv, imp

6 Elements of Language

 6-18

6.5 Expression
Expression is the general numeric expression as constants, variables and
functions connected with operator. Also, the characters and numerals or any
variables are regarded as expression.
Example)

“BASIC”
3.14
10 + 3 / 5
a! + b! / c! －d!
Tan(x#)

7 Structured Programming

 7-1

7. Structured Programming
Structured programming is the programming method developed to increase
productivity, reliability and maintenancebility of programs in the software
engineering.
The followings are two main fundamentals of structured programming.

 Element of program structure

 Subroutine as program module
HrBasic is able to program by means of these fundamentals. So, HrBasic has
the ability to develop a structured program.
Element of program structure, module and remarks in HrBasic are described
below.

7.1 Element of Program Structure
Structured programming is based on the combination of the following
programming elements to describe a procedure.

(1) Sequence structure

(2) Selection structure

(3) Iteration (Repetition) structure
In a structured program, there are one entrance and one exit of a procedure
using the above-mentioned elements. This structure makes a program easier to
understand, maintain and test.
If GoTo statement is frequently used in a program, process flow jumps
irregularly. This causes difficulty to understand program flow with decrement
of maintenancebility and makes testing too complex. Therefore, GoTo
statement is not used in structured programming generally. But, in some case,
local usage of GoTo statement is effective to simplify a program.
Each element is explained below.

7.1.1 Sequence Structure
Sequence structure means the program structure which is executed from top to
end of program. In the following figure, the program is executed in order of the
number from procedure #1 to procedure #n.

Procedure #1

Procedure #2

Procedure #n-1

Procedure #n

In HrBasic, a source program is executed from the first line to the end line
sequentially. In case of multi-statement, a sentence in one line is executed from
left to right.

7 Structured Programming

 7-2

Example)
Job Name “arm”
Global g.ArmCmd%
arm.robot% = 1 : table.robot% = 0

*POWER.ON
 g.ArmCmd% = &HFF
 Job "arm" Off

7.1.2 Selection Structure
Selection structure means to select a procedure by the logical condition. There
are some patters of selection structures. The following figure shows the pattern
of selection structure and the description of HrBasic.

Type Structure Program
Two
branches #1

Condition

Procedure

False

True

If Condition
 Procedure
EndIf

Two
branches #2

 Condition

Procedure #1 Procedure #2

False

True

If Condition
 Procedure #1
Else
 Procedure #2
EndIf

Multiple
selected
branches

#1 #2 #n Else

Proc.#n+1Proc.#1

Condition

Proc.#2 Proc.#n….

Select Case Condition
Case #1
 Procedure #1
Case #2
 Procedure #2
 :
Case #n
 Procedure #n
Case Else
 Procedure #n+1
End Select

In this figure, “Procedure” may contain not only one step but multiple steps.
And it can contain selection structures.

In case of two branches, maximum number of nestsi is allowed up to 20. In
case of multiple selected branches, it is allowed up to 8.

“Condition” is the expression which has the logical result of true or false. And it
has to be programmed in one line.
Sample programs of each pattern are shown below.

i Nest: Recursive usage of a program structure

! Note

7 Structured Programming

 7-3

(1) Two branches #1
If arm.pos% <> 0 then 'Arm position --- upper.
 'Move arm down
 OUTB(O.ARM.UP) = SWITCH.OFF
 OUTB(O.ARM.DOWN) = SWITCH.ON
 arm.pos%=0 'Arm position --- origin
EndIf

(2) Two branches #2
If INB(I.SHUT.OPEN) = 1 then ‘Shutter opened
 OUTB(O.SHUT.CLOSE) = SWITCH.OFF
 OUTB(O.SHUT.OPEN) = SWITCH.OFF
Else
 OUTB(O.SHUT.CLOSE) = SWITCH.OFF
 OUTB(O.SHUT.OPEN) = SWITCH.ON
EndIf

(3) Multiple selected branches
Select Case object.plate.no%
Case PLATE1
 Move #1,PTP,PM(PM.PLATE1)
Case PLATE2
 Move #1,PTP,PM(PM.PLATE2)
Case PLATE3
 Move #1,PTP,PM(PM.PLATE3)
Case PLATE4
 Move #1,PTP,PM(PM.PLATE4)
Case PLATE5
 Move #1,PTP,PM(PM.PLATE5)
Case Else
 error.flag%=13
End Select

(4) Combination of selections
sys.err%=Err
Select Case sys.err%
Case 39
 error.flag% = 2 'Receiving error
Case 43
 error.flag% = 3 'Not connected
Case 80
 error.flag% = 4 'Timeout
Case 81
 If (Ref(#1,STATUS8) and &H40) <> 0 then
 error.flag% = 11 'Emergency stop
 Else
 If (ref(#1,STATUS8) and &H01) <> &H01 then
 error.flag% = 10 'Not online
 Else
 error.flag% = 5 'Robot error
 EndIf
 EndIf
Case 82
 error.flag% = 6 'Robot response error
Case 83
 error.flag% = 7 'Robot memory error
Case Else
 If sys.err% <= 14 then
 error.flag% = 12 'System error
 Else

7 Structured Programming

 7-4

 error.flag% = 08 'Application error
 EndIf
End Select

7.1.3 Iteration Structure
Iteration structure means that a procedure repeats while a condition is
fulfilled.
In HrBasic, For-Next statement is supported for this structure. The following
figure shows the structure and the description of HrBasic.

Pattern Program

Condition
False

True

Procedure

For … To … Step
 Procedure
Next

In this figure, “Procedure” may contain not only one step but multiple steps.
And it can contain selection structures.

In For-Next statement, maximum number of nests is allowed up to 16.

In For-Next statement, “Condition” is described to count the number of
repetitions.

GoTo statement is needed when a program exits the loop without the condition
of For statement. See “7.1.4 Usage of GoTo statement”

Sample program is shown below.

For i% = 0 to data.cnt%－1
 data.box%(i%, 0) = data.bax(i%+1, 0)
 data.box%(i%, 1) = data.bax(i%+1, 1)
 Select Case data.box%(i%, 0)
 Case PATTERN.1
MD(MD.PATNO1)=i%
 Case PATTERN.2
MD(MD.PATNO2)=i%
 Case PATTERN.3
MD(MD.PATNO3)=i%
 Case Else
error.flag% = 10
 End Select
Next i%

! Note

! Note

7 Structured Programming

 7-5

7.1.4 Usage of GoTo Statement
In structured programming, GoTo statement is not used generally. But some
case of repetition structure has to use GoTo statement. And in some case, a
program is difficult to understand without GoTo statement.
These cases are shown below.

(1) Repetition structure without For-Next statement
In case that a procedure repeats while a condition except the count of
repetitions is fulfilled, GoTo statement has to be used.
Example)
‘Flicker blue lamp by 1 sec interval
*BLUE.BLINK.LOOP
 Delay 1
 OUTB(O.BLUE)=1
 Delay 1
 OUTB(O.BLUE)=0
 'Loop while manual or ready mode
 If mode%=MANUAL.MODE or mode%=READY.MODE Then
 GoTo * BLUE.BLINK.LOOP
 EndIf

(2) Repetition structure with For-Next statement adding some condition
In addition to the count of repetitions, if some condition is fulfilled, a
program exits the For-Next loop using GoTo statement.
Exxample)
For i = 0 to pate.no%
 If plate.mode(i%) = BUSY Then
 equip.mode% = BUSY
 GoTo *NEXT.CHECK
 EndIf
next
* NEXT.CHECK
 :
 :

(3) Infinite loop
If a program never terminates except the power-off or Job Off by another
job, GoTo statement is used for the infinite loop.
Example)
*LOOP
 Select Case mode%
 Case ERROR.MODE 'Error mode
 GoSub *RED.BRINK
 Case MANUAL.MODE 'Manual mode
 GoSub *BLUE.BLINK
 Case READY.MODE 'Ready mode
 GoSub *BLUE.BLINK
 Case AUTO.MODE 'Running mode
 GoSub *BLUE.LIGHT
 Case Else
 Select End
GoTo *LOOP

(4) Distinction between exception procedure and normal procedure
An exception procedure can be programmed using If-Then-Else
statement without GoTo statement, but if an exception procedure is
complex, there is a case that a program becomes simpler to use GoTo
statement.

7 Structured Programming

 7-6

< Example without GoTo statement >
If plate.mode%(HP1) <> AUTO or plate.mode%(HP2) <> AUTO Then
‘Exception #1
 error.flag% = 14
Else
 If plate.mode%(HMDS) <> AUTO Then ‘Exception #2
 error.flag% = 37
 Else
 If plate.mode%(CP1) <> AUTO Then ‘Exception #3
 error.flag% = 38
 Else
 If plate.mode%(CP2) <> AUTO Then ‘Exception #4
 error.flag% = 39
 EndIf
 EndIf
 EndIf
EndIf
‘Normal procedure
 :
 :
 :

< Example with GoTo statement >
If plate.mode%(HP1) <> AUTO or plate.mode%(HP2) <> AUTO Then
‘Exception #1
 error.flag% = 14
 GoTo *PLATE.CHK.ERR
EndIf
‘Exception #2
If plate.mode%(HMDS) <> AUTO Then
 error.flag% = 37
 GoTo *PLATE.CHK.ERR
EndIf
‘Exception #3
If plate.mode%(CP1) <> AUTO Then
 error.flag% = 38
 GoTo *PLATE.CHK.ERR
EndIf
‘Exception #4
If plate.mode%(CP2) <> AUTO Then
 error.flag% = 39
 goto *PLATE.CHK.ERR
EndIf

‘Normal procedure
*PLATE.CHK.ERR
 :
 :

For a simple program, it is recommended that GoTo statement is used in the
cases of (1) through (4).

7 Structured Programming

 7-7

7.2 Subroutine as Program Module

7.2.1 Merit of Subroutine
As a system is bigger, its program is larger and more complex with the
difficulty to understand. One of the solutions is that a program is divided to
small subroutines.
If there is a common procedure in a program, that procedure should be
described as a subroutine which is independent from a main program. And the
subroutine has to be called in a main program. After the call of subroutine, a
procedure of the subroutine is executed and then exits and returns to a main
program.

Call Subroutine#1

Call Subroutine#2

Main program Subroutine

Subroutine#1

Return

Subroutine#2

Return

This structure avoids the loss of same procedures in a program. And if the
trouble of the procedure happens, only the subroutine has to be modified.
Even if there is no common procedure, to divide a program to small subroutines
are effective to increase maintenancebility and quality of a program. This is
likened to make a sectioned document such as a manual. A sectioned document
is easier to understand than un-sectioned document.

 Sectioned document Un-sectioned document

 :
 :
7.1 Element of Program Structure

 7.1.1 Sequence Structure
 :
 7.1.2 Selection Structure
 :
 7.1.3 Iteration Structure
 :

 ：
 ：
7.1 Element of Program Structure

Sequence Structure is ….

 :
Selection Structure is …

 :
Iteration Structure is …

 :

If a procedure runs once, it is better that the procedure “Initialization”, for
example, is extracted from a main program as a subroutine. This causes that a
main program is simpler and a HrBasic user concentrates on only the
“Initialization” subroutine when the system initialization is tested or checked.
Generally, merits to divide a program to subroutines are the followings.

(1) Compact to develop

(2) Easy to debug

7 Structured Programming

 7-8

(3) Easy to understand

7.2.2 Practice and Note of HrBasic Subroutine
In HrBasic, a subroutine is called by GoSub statement and it returns to the the
next step of GoSub statement by Return statement.

Job Name “test”
*MAIN.LOOP
 GoSub *SUB1
 :
 GoSub *SUB2
 :

GoTo *MAIN.LOOP
*SUB1
 :
 GoSub *SUB2
 :

Return
*SUB2
 :

Return

Main program

Subroutines

There are some notes to use subroutines as follows.

(1) Local variable in a subroutine
In HrBasic, a local variable can be accessed at any step in a job. A local
variable which is accessed in a main program is also able to be read or
written in a subroutine. Therefore, after a local variable is written in a
subroutine, a main program cannot get the last value of the variable and
there is the bad case that a main program cannot work correctly.
It is necessary that usage of a local variable is independent from a main
program.
In the following example, i% is changed in AUTO.IO.SET subroutine and
the main program does not run with the unexpected result.
Example)

Job Name “sample1”
Include “sample.hed”
Global g.PortMode%(3)

*MAIN.LOOP
 For i% = 0 To 3 ‘Set i%
 Select Case g.PortMode%(i%)
 Case AUTO.MODE:
 GoSub *AUTO.IO.SET
 :
 End Select
 GoTo *MAIN.LOOP

*AUTO.IO.SET
 For i%=0 to 2 ‘!!! i% overwritten !!!
 OUTB(O.BASE+i%) = 1
 Next i%
 :

Return
 :

(2) Limit of subroutine nests

7 Structured Programming

 7-9

The maximum nests of subroutines are 16. If the nests are overflow, Job
error “Out of memory” occurs.
In the following example, SUB1 through SUB16 are called in nests.

Example)
Job Name “sample2”

*MAIN.LOOP
 GoSub *SUB1

GoTo *MAIN.LOOP

*SUB1
 GoSub *SUB1

Return
*SUB2
 GoSub *SUB2

Return
:
:

*SUB15
 GoSub *SUB16

Return
*SUB16
 :

Return

(3) Pairing of GuSub and Return
A subroutine has to be programmed as entry by GoSub and exit by
Return. To use GoTo statement, there may be a problem in case that a
program jumps to enter a subroutine or exits from a subroutine.

Case Example Explanation
Entry by GoSub and
exit by Return

*LOOP
 GoSub *AAA
 :
 GoTo *LOOP
*AAA ‘Subroutine
 :

Return

Correct usage without problem.

Entry by GuSub and
exit by GoTo

*LOOP
 GoSub *AAA
*BBB
 :
 GoTo *LOOP
*AAA ‘Subroutine
 :
GoTo *BBB

When a program is running, STP checks
the pairing of GuSub and Return.
In this case, job error “Nests of
GOSUB-RETURN overflow” occurs.

7 Structured Programming

 7-10

Case Example Explanation
Entry by GoTo and
exit by GoSub

*LOOP
 GoTo *AAA
 :
 GoTo *LOOP
*AAA ‘Subroutine
 :

Return

When a program is running, STP checks
the pairing of GuSub and Return.
In this case, job error “RETURN without
GOSUB” occurs.

Entry by GoTo and
exit by GoTo

*LOOP
 GoTo *AAA
*BBB
 :
 GoTo *LOOP
*AAA ‘Subroutine
 :
GoTo *BBB

In this case, a program runs normally.
But, this usage of GoTo statement causes
the difficulty to understand the program.
Such complex program is called “spaghetti
program”i.

(4) Independency of subroutine
A subroutine has to be functioned simply and it is necessary to have high
independency from other program.
In the following example, the left program has to be modified as the right
program.

Job Name “sample3”

*MAIN.LOOP
 GoSub *AAA
 :
 GoSub *BBB
 :
 goto *MAIN.LOOP

‘**Subroutines***
*AAA
 :
*BBB
 :

Return

Job Name “sample3”

*MAIN.LOOP
 GoSub *AAA
 :
 GoSub *BBB
 :
 GoTo *MAIN.LOOP

‘**Subroutines***
*AAA
 :
 GoSub *BBB
 :

Return
*BBB
 :

Return

This
procedure
has to be
divided to
another
subroutine.

(5) Go back to the program which has called the subroutine.
When a program exits from a subroutine, to return into the program
which has called the subroutine is necessary. The following left figure is
a bad example that a program jumps to another subroutine. This
example is a just “spaghetti program”.
In this case, the program structure needs to be designed properly by
functional division and then it has to be modified to the right figure.

i Spaghetti program: complex and tangled program like spaghetti

7 Structured Programming

 7-11

Job Name “sample4”

*MAIN.LOOP
 GoSub *AAA
 :
 GoSub *BBB
 :
 GoTo *MAIN.LOOP

‘**Subroutines***
*AAA
 :
 GoTo *ABC
 :
Return

*BBB
 :
*ABC
 :
Return

Job Name “sample4”

*MAIN.LOOP
 GoSub *AAA
 GoSub *ABC
 :
 GoSub *BBB
 :
 GoTo *MAIN.LOOP

‘**Subroutines***
*AAA
 :
 GoSub *ABC
 :

Return
*BBB
 :
 GoSub *ABC
 :

Return
*ABC
 :

Return

7.2.3 Input Parameter and Output Parameter
A function is programmed in a subroutine. There is a case that a function
needs some parameters before execution and the result after a subroutine has
executed a function to return.
A parameter specified before a subroutine is executed is called “input
parameter” and a parameter as the result of a subroutine is called “output
parameter”. A input parameter has to be set in a main program calling a
subroutine and a output parameter has to be set in a subroutine. Parameter for
a subroutine is often called “argument”.
In case that a subroutine returns with the value of the result, the value is
called “return value” which generally contains error information. A return
value is a kind of output parameter.

In HrBasic, a local variable is generally used as a parameter to increase the
independency of a subroutine.
For example, the following shows the subroutine which calculates triangle area
by its base length and height.
< Example of subroutine >
'***
'Procedure: GET.TRI.AREA
'Summary: Get triangle area
'Return: [OUT] ret% =0:OK =-1:parameter error
'Argument:

Subroutine

Input parameter

Output Parameter (Result)

Return value

7 Structured Programming

 7-12

' [IN] base! --- Base length of triangle (0 to 100cm)
' [IN] height! --- Height of triangle (0 to 100cm)
' [OUT] area! --- Area of triangle (cm2)
'Caution:
'***
*GET.TRI.AREA
 ‘Clear return value
 ret% = 0
 ‘Check parameter
 If base! < 0.0! or base! > 100.0! Then
 ret% = -1 ‘parameter error
 Return

 EndIf
 If height! < 0.0! or height! > 100.0! Then
 ret% = -1 ‘parameter error
 Return
 EndIf
 ‘Get area
 area! = (base! * height!) / 2.0!
 ‘Normal return
 Return
< Example of program to call the subroutine >
 ‘Get triangle area with base 21.3cm, height 3.5cm
 base! = 21.3!: hight! = 3.5! ‘Set input parameters
 GoSub *GET.TRI.AREA
 If ret% <> 0 Then ‘Error
 GoTo *ERROR.HANDLER
 EndIf

 g.TriArea! = area! ‘Set result to global variable

It is recommended that the subroutine specification is described like the
following format using comments before the subroutine program is described.
'***
'Procedure: Subroutine-Name
'Summary: Function-Overview
'Return: [OUT] Return-Value-Explanation
'Argument: [IN] Input-Parameter-Explanation
' [OUT] Output-Parameter-Explanation
'Caution: Note
'***
*Subroutine-Name
 Subroutine-Program
 Return

A subroutine without parameters is allowed to program.

!
Guideline for
Programming

! Note

7 Structured Programming

 7-13

7.3 The Point of Structured Programming
As simple explanation, structured programming is the combination of
procedure blocks. A program is built by blocks of sequence structures, selection
structures, repetition structures and subroutines.
In structure programming, it keeps strictly that each block has only one entry
and one exit.
Generally, a program is not allowed to enter or exit from the middle of a block.
A program which frequently enter or exit from the middle of a block is called
“spaghetti program”, complex, difficult to understand and maintain, and its
quality becomes lower.

The following figure shows bad example and how to modify it.

Example #1) Entry to the middle of selection block
Bad example Modified

 If addr% < 10 Then
 GoTo *RB.MOVE
 EndIf
 If addr% = 10 Then
 OUTB(addr% + 100) = 1
*RB.MOVE
 Move #1,PTP,PM(addr%)
 EndIf

If addr% <= 10 Then
 If addr% = 10 Then
 OUTB(addr% + 100) = 1
 EndIf
 Move #1,PTP,PM(addr%)
EndIf

Sequence block

Repetition block

Subroutine call block

Example of correct structured
programming

Selection block

Selection block

Subroutine call block

Selection block

Sequence block

Repetition block

Subroutine call block

Example of spaghetti
programming

Selection block

Selection block

Subroutine call block

Selection block

7 Structured Programming

 7-14

Example #2) Exit from the middle of selection block
Bad example Modified

 If addr% = 20 Then
 OUTB(addr% + 100) = 1
 Wait INB(addr% + 200) ,10
 OUTB(addr% + 100) = 0
 If TimeOut Then
 GoTo *NEXT.STEP
 EndIf
 EndIf
 Move #1,PTP,PM(addr%)
*NEXT.STEP
 :

flag%=0
If addr% = 20 Then
 OUTB(addr% + 100) = 1
 Wait INB(addr% + 200), 10
 If TimeOut Then flag% = 1
 OUTB(addr%+100) = 0
EndIf
If flag% = 0 Then
 Move #1,PTP,PM(addr%)
EndIf

Example #3) Entry to and Exit from the middle of selection block
Bad example Modified

If mode% = AUTO Then
 arm.rbt% = 1 : table.rbt% = 0
 If (Ref(#3,SATTUS9) and &h01)=0 Then
 GoTo *SKIP.SEQ
 EndIf
 arm.rbt% = 0 : table.rbt% = 0
Else
*SKIP.SEQ
 arm.rbt% = 0 : table.rbt% = 1
 Disable #2
 SeqEnd #2
EndIf

flag% = 0
If mode% = AUTO Then
 arm.rbt% = 1 : table.rbt% = 0
 If (Ref(#3,STATUS9) and &h01)=0 Then
 flag% = 1
 Else
 arm.rbt% = 0 : table.rbt% = 0
 EndIf
EndIf
If mode%<>AUTO or flag% =1 Then
 arm.rbt% = 0 : table.rbt% = 1
 Disable #2
 SeqEnd #2
EndIf

7 Structured Programming

 7-15

7.4 Header File
A header file is the definition file and it has the filename suffix “.hed”.
Define statement can be described in a header file and it replaces a string to
another one. When the string, defined at the first argument of Define
statement, appears in a source program, the string is replaced with the string
specified to the second argument of Define statement. And then the program is
compiled.

By means of using the equivalent name by Define statement, the program
modification becomes very easier in case that a constant needs to change to
another value.
For the above example, only a header file has to be modified and then a
program has to be re-compiled and linked, in case that I/O assignment needs to
change.
If “OUTB(10)=1” is described one hundred times in a program, you have to find
all the description and modify it. However, even if “OUTB(O.LIFT.UP)=1” is
described one hundred times, only one sentence in the header file has to be
modified.
In case that a constant is described once or few times, it is better that the
constant which has a possibility of modification is defined in the header file.

Source file (Test.bas)

Job Name “Test”
Include “io.hed”
 :
 :
OUTB(O.LIFT.UP)=1
 :
 :

Header file (io.hed)

 :
 :
Define O.LIFT.UP 10
 :
 :

Executable file

 :
 :
 :
OUTB(10)=1
 :
 :

Compilation

Note) Compiled to intermediate
codes actually.

7 Structured Programming

 7-16

7.5 Macro File
Macro is the efficient method in case that there are many repetitions of the
same procedure in the program.
You can use a macro like a function call.
In a macro file, you can define a block of serial program steps as a macro.
The macro name to use like a function call is the name of macro file.
When calling the macro name is described in a program, compiler replaces the
macro name to the block of program steps defined in the macro file.
You can use "arguments" like a function call as the interface parameters
between a program and a macro.
The demerit is that an executable program becomes bigger in case that many
macro-calls appear because the many macro procedures are embedded in a
program.

 Macro file
A macro file is created or edited by a text editor as the same as a source
file.
The file name except the file extension must consist of one to eight
alphabets or numerical characters. And the first character of the file
name must be an alphabet.
The file extension must be ".bas".
The macro file name must not be the same as the reserved word (e.g. Sin,
Cos).
A macro file is necessary to locate in the directory defined at "Macro
files" in [Set-up]-[Directory] of HBDE Main Menu.
A macro file does not need a Job Name statement at the top.
But it needs a Macro statement that defines arguments as parameters
for a macro file.

Source file (xxx.bas)

Program A

Program B

macro-name (arguments)

Program A

Program B

Macro program

Executable file

+

Compilation

MACRO arguments

Macro file (macro-name.bas)

Macro program

7 Structured Programming

 7-17

You can define up to ten arguments, but the number of arguments in a
source file and the one in a macro file defined by Macro statement must
be the same.
Example)
< Source file: Test.bas >
 Job Name “Test”
 :
 Display(1, 2, 3) ‘ Macro-call
 :
< Macro file: Display.bas >
 Macro para1%, para2%, para3%
 :
Variables except reserved variables (e.g. MD, MW) in a macro file are
local variables that can be access only in a macro file. Therefore, if a
source program wants to get the return value as the execution result of a
macro file, use a reserved global variable to set the return value.
Array variable cannot be specified as a argument of a macro.

 Example
< Source file: Test.bas >
 Job Name "Test"
 :
 :
 :
 work%=4
 weight%=0
 limit%=10
 Trans(work%, weight%, limit%, 8) ‘ Macro-call
 :
 :
Calling a macro file "Trans.bas" and specifying "work%" as 1st argument,
"weight%" as the 2nd argument, "limit%" as 3rd argument and "8" as 4th
argument.

< Macro file: Trans.bas >
 Macro work.number%, work.weight%, work.limit%, work.lot%
 :
 :
 :
"Macro" statement defines the arguments. In the example, the value of
"work%" in a source file is handed over to "work.number%" and similarly
"weight%" to "work.weight%", "limit%" to "work.limit%", "8" to
"work.lot%".

Number of arguments
must be the same.

8 Robot Control Programming

 8-1

8. Robot Control Programming
STP on HAC and WinSTP can control our HNC robots to execute HrBasic
program.
A HNC-1XX, 2XX, 3XX, 544 type can handle max four axes as one robot.
A HNC-580 series or HAC-8XX can handle four virtual robots and max six axes
of each robot.
The following explanation shows how HrBasic program controls HNC robots.

8.1 Connection with HNC Robot
The connection method is different between STP on HAC and WinSTP shown
as follows.

(1) Connection between STP and HNC on HAC
STP and HNC are implemented on the same HAC board. The connection
between STP and HNC is realized as the internal communication path on
the board. STP can communicate with HNC through this internal path.
HrBasic program can access the internal path as "COM0" port.

HrBasic
Program

(STP)
HNC

HAC

COM0：Internal
Communication Path

HBDE

Windows PC

(2) Connection between WinSTP and HNC robot

Standardly, WinSTP is connected with HNC by RS-232C interface.
HrBasic can communicate with HNC using "COMn" port of PC.

HDBE
HrBasic
Program
(WinSTP)

HNC

Windows PC

COMn port
(RS-232C)

8 Robot Control Programming

 8-2

8.2 Procedure of Robot Communication
Procedure of robot communication is the same as the normal data
communication as follows.

(1) Open a port for robot communication

(2) Access the port for robot communication

(3) Close the port for robot communication
The details of each procedure are explained below.

8.2.1 Open a Port for Robot Communication
How to open a port for robot communication is the same in case of STP on HAC
and WinSTP. But, the number of COM port to open is different in each case.
The sample of OPEN statement is as follows.

STP type Using COM port OPEN statement
STP on HAC COM0 open "COM0"
WinSTP COMn (n>=1) open "COMn: ..."

After a COM port is opened once, all jobs can access the port.

● The same COM port cannot be opened multiplly even if the different file
number is specified.

● The same file number cannot be opened multiplly even if the different COM
is specified.

The parameters specified to OPEN statement are shown below.

(1) COM port name
Specify the COM port name to open.
In case that STP will control HNC on HAC, "COM0" must be specified.
In case of WinSTP, "COMn" can be specified as RS-232C port. (n>=1)

(2) RS-232C settings
In case of "COM0" for HAC, RS-232C settings are not needed.
In case of using RS-232C port, communication speed, parity, data length
and stop bit must be specified.

(3) File number
HrBasic treats a communication port (COM port) as a file. Specify the
file number to assign for the opened file. After the file has been opened,
the file number is used for all statements or functions to access the file.

(4) Robot type
Specify the HNC type to communicate. If the type is omitted or zero is
specified, HNC-1XX, 2XX, 3XX, 544 type that has no virtual robot with
four axes max is selected. If "580" is specified, HNC-580 series type that
has four virtual robots with max six axes for each robot is selected. In
case of HAC-8XX, "580" must be specified because the type of HNC on
HAC-8XX is the same as HNC-580 series.

(5) Robot number list
If "580" is specified to "Robot type" described above, HrBasic can control
up to the four virtual robots. The list of using robot numbers is needed
for OPEN statement.

8 Robot Control Programming

 8-3

The robot number is the number that is set at HNC System Generation
data as [MAINTENANNCE]-[MAINTENANCE DATA]-[STATION NO].
This data can be manipulated by teaching pendant or HrEditor installed
as the software component of HBDE. [STATION NO] has the range of 1
to 999. Default setting of [STATION NO] is shown below.

Virtual Robot Robot number
[STATION NO]

ROBOT 1 1
ROBOT 2 2
ROBOT 3 3
ROBOT 4 4

The examples to open a robot communication port are shown below.
(Example 1 : HAC-8XX)

open “COM0” as #1 robtype=580 robnolist=1,2,3
1) Communication port COM0 (Internal interface port)
2) File number 1
3) HNC type 580
4) Robot number list 1, 2, 3

(Example 2 : WinSTP controls HNC-580 series)
open “COM1:19200,E,7,1” as #1 robtype=580 robnolist=1,2

1) Communication port COM1 (RS-232C port)
2) File number 1
3) RS-232C settings

• Communication speed 19200 bps
• Parity Even parity
• Data length 7 bits
• Stop bit 1 bit

4) HNC type 580
5) Robot number list 1, 2

(Example 3 : WinSTP controls HNC-1XX,2XX,3XX,544 type)
open “COM1:9600,E,7,1” as #1

1) Communication port COM1 (RS-232C port)
2) File number 1
3) RS-232C settings

• Communication speed 9600 bps
• Parity Even parity
• Data length 7 bits
• Stop bit 1 bit

8.2.2 Access the Port of Robot Communication
Using the file number assigned at OPEN statement, you can access the port to
control the robot.
The file number must be specified to statements or functions (MOVE, REF,
etc.) for robot control.

Example)
move #1, pm(100) 'move to teaching address #100

In addition, in case of HNC type "580", the robot number of the target that the
program controls must be specified.
The robot number can be specified by the following two ways.

8 Robot Control Programming

 8-4

(1) Secify the robot number in each statement or function for robot control.
The description "[rno:robot_no]" can be added after the file number.
"robot_no" is specified as the constant or the variable.

Example)
'Move the robot number #2 through file number #1 to address #100.
move #1[rno:2], pm(100)

(2) Define the implicit robot number of current job using SETROBNO
function. The implicit robot number will be used at robot control
statements or functions without the description "[rno:robot_no]".

Example)
'Define inplicit robot number is #2 for current job
setrobno(2)
'Move the robot number #2 through file number #1 to address #100.
move #1, pm(100)

8.2.3 Close the port for robot communication
Using the file number assigned at OPEN statement, close the port for robot
communication. In case of HNC type "580", the robot number cannot be
specified and the all communications of virtual robots are closed.
Example)

close #1 'Close port of file number #1

If CLOSE statement is executed without the filenumber, all files that have
been opened in STP will be closed.

8.3 Overview of Statements And Functions for
Robot Control

HrBasic implements statements and functions that can control our HNC robot.
In the following explanation, these statements and functions are overviewed.
See "9.3 Language Reference" about the details.

(1) MOVE statement
MOVE statement moves the robot to the specified position. By standard
usage, MOVE does not return until the robot stops to complete
positioning. But if an error occurs while the robot moving, MOVE
finishes executing and a job error is raised.
If "nowait" option is added, MOVE returns immediately after the robot
starts to move.

(2) SET statement
SET statement sets data of the moving characteristics.

(3) REF function
REF function returns the current status information of the robot.

(4) SEQ-SEQEND statement
When MOVE is executed within SEQ-SEQEND block, MOVE returns
immediately after the robot starts to move. But in case of the Z-axis
down motion, the robot does not move Z-axis down waiting the execution
of FINISH statement. FINISH statement allows that the robot moves
Z-axis down. Even if there is not Z-axis down motion, FINISH statement
is needed to complete positioning.

8 Robot Control Programming

 8-5

STP does not check the completion of positioning, the program have to
confirm it.
In SEQ-SEQEND block, the program can check or control I/O while the
robot is moving.

(5) FINISH statement
FINISH statement must be used within SEQ-SEQEND block.
FINISH statement allows that the robot moves Z-axis down after the
robot starts to move by MOVE statement. If the execution of FINISH is
late or there is not the execution of it, the robot is waiting at the position
where Z-axis is up. Even if there is not Z-axis down motion, FINISH
statement is needed for the completion of positioning

(6) HOLD ON/OFF statement
In case of HNC-1XX, 2XX, 3XX, 544 type, HOLD statement make the
axis holding or not holding.
In case of HNC-580 series or HAC-8XX, HOLD statement is not
supported since the all axes are always held after power on.

(7) DISABLE statement
While the robot is moving after MOVE statement, DISABLE statement
can stop the robot moving. If the robot stops, MOVE statement by normal
usage returns immediately and the next step of MOVE is executed.

(8) CALIB statement
For the robot system, A-CAL (Automatic Calibration) must be executed
at least one time on purpose to make the origin point of the control
system equivalent to the mechanical origin point.
CALIB statement executes A-CAL.
If using the absolute type of motor encoder, A-CAL data does not
disappear after power off. In this case, A-CAL has to be executed only
once normally.
If using the incremental type of motor encoder, A-CAL data disappears
after power off. In this case, A-CAL has to be executed after every power
on.

(9) SETROBNO function
SETROBNO function is used when the robot type "580" is specified at
OPEN statement.
SETROBNO function defines the implicit robot number of current job.
After SETROBNO is executed, specifying the robot number at a
statement or function for robot control can be omitted.

Note) The implicit robot number is initialized to the value -1 for all jobs
when STP or WinSTP starts.

(10) CLEARROBNO function
CLEARROBNO function is used when the robot type "580" is specified at
OPEN statement.
CLEARROBNO function clears the current implicit robot number of the
job. After CLEARROBNO is executed, the returned value of GETROBNO
is -1.

(11) GETROBNO function
GETROBNO function is used when the robot type "580" is specified at
OPEN statement.
GETROBNO returns the current implicit robot number of the job.

(12) ENABLEONLINEERR statement

8 Robot Control Programming

 8-6

ENABLEONLINEERR statement enables to check online mode of the
robot during robot moving. If the robot is not online while robot moves,
MOVE statement raises a job error.
After STP or WinSTP starts, online check is enabled as default for all
jobs.

(13) DISABLEONLINEERR statement
DISABLEONLINEERR statement disables to check online mode of the
robot during robot moving. Even if the robot is not online while robot
moves, MOVE statement does not raise a job error and waits the
completion of robot positioning.

(14) ROBCHECKBPZONE function
ROBCHECKBPZONE function is available when the robot type "580" is
specified at OPEN statement.
ROBCHECKBPZONE checks current BP/ZONE status of the robot.
BP/ZONE status is the current positioning information of the robot as
follows.

• BP (Base Position) If the current position of the robot is near the
base position, BP status bit is ON.

• ZONE If the current position of the specified axis is
within the range , ZONE status bit is ON.

ROBCHECKBPZONE function returns true value if the BP/ZONE status
bit is ON.
Refer to robot operation manual about BP/ZONE settings.

(15) ROBCHECKCURPOS function
ROBCHECKCURPOS function checks that the current position of the
robot is near the specified position address. ROBCHECKCURPOS
function returns true value if the robot position is near.
The checking range of position can be defined by ROBSETPOSRANGE
statement.

(16) ROBCHECKSTOP function
ROBCHECKSTOP function checks that the robot is stopping currently.
ROBCHECKSTOP function returns true value if the robot is stopping.

(17) ROBCLEARERR statement
ROBCLEARERR statement clears error status of the robot. If the
program restarts to move the robot after an error has occurred, error
recovery must be executed by ROBCLEARERR statement.

Note) ROBCLEARERR statement cannot recover some errors.

(18) ROBSETPOSRANGE statement
ROBSETPOSRANGE statement defines the range to check the robot
near the position address using by ROBCHECKCURPOS function.
Default setting is 1.0mm or 1.0deg. for all axes.

8 Robot Control Programming

 8-7

8.4 Sample Program
The sample program that two robots move parts from station #1 to station #2
via temporary table is shown below.
This sample assumes that HAC-8XX is used and two virtual robots have been
configured.

8.4.1 Specification of Sample Program

(1) Motion
1) After the input signal to start is 1, two robots confirm to hold any

parts.
2) Two robots move to the waiting position.
3) Robot #1 moves to the station #1.
4) Robot #1 gets a part with a chuck.
5) Robot #1 moves to the temporary table.
6) Robot #1 puts the part on the temporary table.
7) Robot #1 moves the waiting position and then robot #2 moves to the

temporary table.
8) Robot #2 gets the part by vacuum.
9) Robot #2 moves to the station #2.
10) Robot #2 puts the part on the station #2
11) Robot #2 moves to the waiting position.

(2) Remote input signals
• Request to start
• Request to reset error
• Part presence on station #1
• Part presence on temporary table
• Part presence on station #2
• Part presence on robot #1
• Robot #1 chuck opened
• Robot #1 chuck closed
• Part presence on robot #2
• Robot #2 vacuum enabled

(3) Remote output signals
• System error
• Open/close robot #1 chuck
• Vacuum of robot #2
• Blow of robot #2

8.4.2 Job List of Sample Program
Job

Name
Program

Name
Function Explanation

init init.bas System
initialization

The job initializes variables, output signals and
opens a commnucation port.
The job must start first and the other jobs must
wait for the completion of initialization.

main main.bas Process
management

After "init" job completes initialization, the job
accepts a request from the outside and manages
the whole process of the system to indicate the
process to the robot control jobs

robot1 robot1.bas Robot #1
control

After "init" job completes initialization, the job
controls robot #1 by indication from "main" job.

8 Robot Control Programming

 8-8

Job
Name

Program
Name

Function Explanation

robot2 robot2.bas Robot #2
control

After "init" job completes initialization, the job
controls robot #2 by indication from "main" job.

8.4.3 Motion of Robots
The position of robots and stations is shown below.

Station #1 Temporary table Station #2

Robot #1

Robot #2

X

Y

Robot #1 and #2 moves as follows.

(1) Robot #1

Z

Station #1 Temporary table
(2) Robot #2

Y

X

Z

1)

2)

3)

Table

Station #2

8 Robot Control Programming

 8-9

8.4.4 Header File
'#######################################
' Robot.hed
'#######################################

'***************************************
' Robot Numbers
'***************************************
define ROB.NUM 2
define RB1.NO 1
define RB2.NO 2

'**
' Robot Commands
'**
define CMD.MOVE.WAIT 1
define CMD.MOVE.GET 2
define CMD.MOVE.PUT 3
define CMD.CHK.OPEN 4
define CMD.CHK.CLOSE 5
define CMD.PART.GET 6
define CMD.PART.PUT 7

'**
' Addresses
'**
define RB1AD.WAIT 100 'Robot #1 waiting position
define RB1AD.GET 200 'Robot #1 getting position
define RB1AD.PUT 300 'Robot #1 putting position
define RB2AD.WAIT 100 'Robot #2 waiting position
define RB2AD.GET 200 'Robot #2 getting position
define RB2AD.PUT 300 'Robot #2 putting position

'**
' Input Signals
'**
define I.START 1 'Request to start
define I.ERR.RESET 2 'Request to reset error
define I.ST1.PART 5 'Presence on station #1
define I.TMP.PART 6 'Presence on temporary table
define I.ST2.PART 7 'Presence on station #2
define I.RB1.PART 11 'Presence on robot #1
define I.RB1.CHK.OPEN 12 'Robot #1 chuck opened
define I.RB1.CHK.CLOSE 13 'Robot #1 chuck closed
define I.RB2.PART 21 'Presence on robot #2
define I.RB2.VACUUM 22 'Robot #2 vacuum enabled

'**
' Output Signals

8 Robot Control Programming

 8-10

'**
define O.SYS.ERR 1 'System error
define O.RB1.CHK.CLOSE 10 'Close robot #1 chuck
define O.RB2.VACUUM 20 'Vacuum robot #2
define O.RB2.BLOW 21 'Blow robot #2

'**
' Error Codes
'**
define ERR.PRESENCE 100
define ERR.ABSENCE 101
define ERR.CHK.OPEN 102
define ERR.CHK.CLOSE 103
define ERR.VACUUM 104
define ERR.TMP.TABLE 105

8.4.5 Job Programs
(1) "init" Job

'***************************************
' INIT JOB
'***************************************
job name "init"
include "robot.hed"

 'Globals
 global Rbt.Cmd%(2)
 global Get.Pt%(2)
 global Err.No%(2)
 global Init.End%

 'Initialize variables
 Init.End%=0
 for i%=0 to ROB.NUM
 Rbt.Cmd%(i%)=&HFF
 Err.No%(i%)=0
 Get.Pt%(i%)=&HFF
 next i%

 'Initialize robot port
 close #1
 open "COM0" As #1 robtype=580 robnolist=RB1.NO,RB2.NO

 'Initialize output
 OUTB(O.SYS.ERR)=0
 OUTB(O.RB1.CHK.CLOSE)=0
 OUTB(O.RB2.VACUUM)=0
 OUTB(O.RB2.BLOW)=0

8 Robot Control Programming

 8-11

 'Get parts presence on robots
 Get.Pt%(RB1.NO)=INB(I.RB1.PART)
 Get.Pt%(RB2.NO)=INB(I.RB2.PART)
 Init.End%=1

 job "init" off

(2) "main" Job

'***************************************
' MAIN JOB
'***************************************
job name "main"
include "robot.hed"

 'Globals
 global Rbt.Cmd%(2)
 global Err.No%(2)
 global Get.Pt%(2)
 global Init.End%

 'Initial
 on error goto *system.error 'Register error handler
 step.cnt%=0 'Clear step counter
 delay 1 'Safety delay for Init.End%=0 in "init" job
 wait Init.End%=1 'Wait for initalization

*Main.Loop
 'Error recovery
 if Err.No%(RB1.NO)<>0 or Err.No%(RB2.NO)<>0 then
 wait INB(I.ERR.RESET)=1 'Wait for request to reset error
 OUTB(O.SYS.ERR)=0 'Clear system error
 for i=RB1.NO to RB2.NO
 Err.No%(i)=0
 Rbt.Cmd%(i)=&HFF
 next i
 step.cnt%=0
 job "robot1" off
 job "robot2" off
 job "robot1" start
 job "robot2" start
 goto *Main.Loop
 endif

 'Request to start
 if step.cnt%=0 then
 wait INB(I.START)=0, 3
 if timeout then goto *Main.Loop 'Not started
 step.cnt%=step.cnt%+1
 goto *Main.Loop
 endif

8 Robot Control Programming

 8-12

 select case step.cnt%
 'Check parts presence on robots
 case 1
 if INB(I.RB1.PART)=1 then
 Err.No%(RB1.NO)=ERR.PRESENCE
 endif
 if INB(I.RB2.PART)=1 then
 Err.No%(RB2.NO)=ERR.PRESENCE
 endif
 'Move robot #1, #2 to waiting position
 case 2
 set #1[rno:RB1.NO], speed=100
 set #1[rno:RB2.NO], speed=100
 Rbt.Cmd%(RB1.NO)=CMD.MOVE.WAIT
 Rbt.Cmd%(RB2.NO)=CMD.MOVE.WAIT
 'Move robot #1 to get
 case 3
 Rbt.Cmd%(RB1.NO)=CMD.MOVE.GET
 'Close robot #1 chuck
 case 4
 Rbt.Cmd%(RB1.NO)=CMD.CHK.CLOSE
 'Check presence on robot #1
 case 5
 if INB(I.RB1.PART)=0 then
 Err.No%(RB1.NO)=ERR.ABSENCE
 endif
 'Move Robot #1 to put
 case 6
 set #1[rno:RB1.NO], speed=50
 Rbt.Cmd%(RB1.NO)=CMD.MOVE.PUT
 'Open robot #1 chuck
 case 7
 Rbt.Cmd%(RB1.NO)=CMD.CHK.OPEN
 'Check presence on temporary table
 case 8
 if INB(I.TMP.PART)=0 then
 Err.No%(RB1.NO)=ERR.TMP.TABLE
 endif
 'Move robot #1 to waiting position
 'Move robot #2 to getting position
 case 9
 set #1[rno:RB1.NO], speed=100
 Rbt.Cmd%(RB1.NO)=CMD.MOVE.WAIT
 Rbt.Cmd%(RB2.NO)=CMD.MOVE.GET
 'Robot #2 gets part
 case 10
 Rbt.Cmd%(RB2.NO)=CMD.PART.GET
 'Move robot #2 to putting position
 case 11
 set #1[rno:RB2.NO], speed=50

8 Robot Control Programming

 8-13

 Rbt.Cmd%(RB2.NO)=CMD.MOVE.PUT
 'Robot #2 puts part
 case 12
 Rbt.Cmd%(RB2.NO)=CMD.PART.PUT
 'Move robot #2 to waiting position
 case 13
 set #1[rno:RB2.NO], speed=100
 Rbt.Cmd%(RB2.NO)=CMD.MOVE.WAIT
 'dummy
 case else
 dummy%=0
 end select

 'Wait for procedure completion
 wait (Rbt.Cmd%(RB1.NO)=&HFF and Rbt.Cmd%(RB2.NO)=&HFF) or
Err.No%(RB1.NO)<>0 or Err.No%(RB2.NO)<>0

 'Next step
 if Err.No%(RB1.NO)=0 and Err.No%(RB2.NO)=0 then
 if step.cnt% < 13 then
 step.cnt%=step.cnt%+1
 else
 step.cnt%=0
 endif
 else
 OUTB(O.SYS.ERR)=1
 endif
 goto *Main.Loop

*system.error
 Err.No%(RB1.NO)=Err
 Err.No%(RB2.NO)=Err
 resume *sys.err.resume 'Terminate error handler
*sys.err.resume
 goto *Main.Loop

(3) "robot1" Job

'***************************************
' ROBOT1 JOB
'***************************************
job name "robot1"
include "robot.hed"

 'Globals
 global Rbt.Cmd%(2)
 global Err.No%(2)
 global Get.Pt%(2)
 global Init.End%

 'Initial

8 Robot Control Programming

 8-14

 on error goto *sys.error 'Register error handler
 delay 1 'Safety delay for Init.End%=0 in "init" job
 wait Init.End%=1 'Wait for initalization
 rbtno%=RB1.NO 'Robot number of this job
 sys.error%=0 'Clear error code
 err.flag%=0 'Clear error flag
 rob.status%=0 'Clear robot status
 setrobno(rbtno%) 'Set implicit robot number

*Loop
 err.flag%=0
 select case Rbt.Cmd%(rbtno%)
 'Move to waiting position
 case CMD.MOVE.WAIT
 move #1, pm(RB1AD.WAIT)
 Get.Pt%(rbtno%)=0 'Out of collision area
 'Move to get
 case CMD.MOVE.GET
 'Wait for part presence on station #1
 wait INB(I.ST1.PART)=1
 'Open chuck before z-axis down
 seq #1
 move #1, pm(RB1AD.GET)
 OUTB(O.RB1.CHK.CLOSE)=0 'Open chuck
 wait INB(I.RB1.CHK.OPEN)=1, 3 'Confirm chuck opened
 if timeout then
 disable #1
 err.flag%=ERR.CHK.OPEN
 else
 finish #1
 wait not robcheckstop(#1) 'Wait for completion of
positioning
 endif
 seqend #1
 'Move to put
 case CMD.MOVE.PUT
 seq #1
 move #1, pm(RB1AD.PUT)
 'Confirm part absence and robot #2 is not near
 wait INB(I.TMP.PART)=0 and Get.Pt%(RB2.NO)=0
 finish #1
 'Set collision
 Get.Pt%(rbtno%)=1
 *WORK.CHECK
 'Confirm part presence on robot #1 while moving
 if INB(I.RB1.PART)=0 then
 disable #1
 err.flag%=ERR.ABSENCE
 else
 'Check robot moving
 if not robcheckstop(#1) Then goto *WORK.CHECK

8 Robot Control Programming

 8-15

 endif
 seqend #1
 'Open chuck
 case CMD.CHK.OPEN
 OUTB(O.RB1.CHK.CLOSE)=0
 wait INB(I.RB1.CHK.OPEN)=1, 3 'Confirm chuck opened
 if timeout then
 err.flag%=ERR.CHK.OPEN
 endif
 'Close chuck
 case CMD.CHK.CLOSE
 OUTB(O.RB1.CHK.CLOSE)=1
 wait INB(I.RB1.CHK.CLOSE)=1, 3 'Confirm chuck closed
 if timeout then
 err.flag%=ERR.CHK.CLOSE
 endif
 'Dummy
 case else
 dummy%=0
 end select

 'Check error
 if err.flag%<>0 then goto *error.routine

 'End of procedure
 Rbt.Cmd%(rbtno%)=&HFF

 goto *Loop

'Error handler
*sys.error
 sys.err%=err 'Job error code
 robclearerr #1 'Clear robot error
 enable #1 'Enable robot moving
 resume *sys.err.resume 'Terminate error handler

*sys.err.resume
 select case sys.err%
 case 39
 err.flag%=2 'COM receiving error
 case 43
 err.flag%=3 'COM sending error
 case 80
 err.flag%=4 'COM Timeout
 case 81
 if (ref(#1,status8) and &H40) <> 0 then
 err.flag%=11 'Emergency stop
 else
 if (ref(#1,status8) and &H01) <> &H01 then
 err.flag%=10 'Online mode error
 else

8 Robot Control Programming

 8-16

 err.flag%=5 'Other robot error
 endif
 endif
 case 82
 err.flag%=6 'COM response error
 case 83
 err.flag%=7 'Robot memory error
 case else
 if sys.err% <= 14 then
 err.flag%=12 'STP system error
 else
 err.flag%=08 'STP application error
 endif
 end select
*error.routine
 Err.No%(rbtno%)=err.flag% 'Set error code
*error.loop
 goto *error.loop 'Wait for job off

 (4) "robot2" Job

'***************************************
' ROBOT2 JOB
'***************************************
job name "robot2"
include "robot.hed"

 'Globals
 global Rbt.Cmd%(2)
 global Err.no%(2)
 global Get.Pt%(2)
 global Init.End%

 'Initial
 on error goto *sys.error 'Register error handler
 delay 1 'Safety delay for Init.End%=0 in "init" job
 wait Init.End%=1 'Wait for initalization
 rbtno%=RB2.NO 'Robot number of this job
 sys.error%=0 'Clear error code
 err.flag%=0 'Clear error flag
 rob.status%=0 'Clear robot status
 setrobno(rbtno%) 'Set implicit robot number

*Loop
 err.flag%=0
 select case Rbt.Cmd%(rbtno%)
 'Move to waiting position
 case CMD.MOVE.WAIT
 move #1, pm(RB2AD.WAIT)
 Get.Pt%(rbtno%)=0 'Out of collision area
 'Move to getting position

8 Robot Control Programming

 8-17

 case CMD.MOVE.GET
 'Wait for part presence on table and collision safety
 wait INB(I.TMP.PART)=1 and Get.Pt%(RB1.NO)=0
 Get.Pt%(rbtno%)=1 'Set collision
 move #1, pm(RB2AD.GET)
 'Move to putting position
 case CMD.MOVE.PUT
 'Wait for part absence on station #2
 wait INB(I.ST2.PART)=0
 'Move by no wait
 move #1, pm(RB2AD.PUT), NoWait
 'Confirm part presence on robot #2 while moving
 *WORK.CHECK
 if INB(I.RB2.PART)=0 then
 disable #1
 err.flag%=ERR.ABSENCE
 else
 'Check robot moving
 if not robcheckstop(#1) Then goto *WORK.CHECK
 endif
 Get.Pt%(rbtno%)=0 'Set collision safety
 'Get a part
 case CMD.PART.GET
 OUTB(O.RB2.VACUUM)=1 'Vacuum ON
 'Confirm vacuum enabled and part presence on robot #2
 wait INB(I.RB2.VACUUM)=1 and INB(I.RB2.PART)=1, 3
 if timeout then
 if INB(I.RB2.VACUUM)=0 then
 err.flag%=ERR.VACUUM
 endif
 if INB(I.RB2.PART)=0 then
 err.flag%=ERR.ABSENCE
 endif
 endif
 'Put a part
 case CMD.PART.PUT
 OUTB(O.RB2.VACUUM)=0 'Vacuum OFF
 OUTB(O.RB2.BLOW)=1 'Blow ON
 delay 0.5
 OUTB(O.RB2.BLOW)=0 'Blow OFF
 'Dummy
 case else
 dummy%=0
 end select

 'Check error
 if err.flag%<>0 then goto *error.routine

 'End of procedure
 Rbt.Cmd%(rbtno%)=&HFF

8 Robot Control Programming

 8-18

 goto *Loop

'Error handler
*sys.error
 sys.err%=err 'Job error code
 robclearerr #1 'Clear robot error
 enable #1 'Enable robot moving
 resume *sys.err.resume 'Terminate error handler

*sys.err.resume
 select case sys.err%
 case 39
 err.flag%=2 'COM receiving error
 case 43
 err.flag%=3 'COM sending error
 case 80
 err.flag%=4 'COM Timeout
 case 81
 if (ref(#1,status8) and &H40) <> 0 then
 err.flag%=11 'Emergency stop
 else
 if (ref(#1,status8) and &H01) <> &H01 then
 err.flag%=10 'Online mode error
 else
 err.flag%=5 'Other robot error
 endif
 endif
 case 82
 err.flag%=6 'COM response error
 case 83
 err.flag%=7 'Robot memory error
 case else
 if sys.err% <= 14 then
 err.flag%=12 'STP system error
 else
 err.flag%=08 'STP application error
 endif
 end select
*error.routine
 Err.No%(rbtno%)=err.flag% 'Set error code
*error.loop
 goto *error.loop 'Wait for job off

9 Commands

9-1

9. Commands

9.1 List of Commands
Kind Usage Description Function

Definition Define Define the specified name as a constant.
Macro Macro Define a format of macro call.

Pre-Processor

Header file Include Read the specified header file.
Psuedo-instructi
on

Definition Job Name Define the entry of a job and job name.

Dim Define as array variable.
DimNet Define as network global variable
Global Define as global variable.
DimPos Define the number of position memory.

Definition

Rem Define the comment line.
GoTo Jump to a specified line, then execute.
GoSub Call subroutine.
Return Terminate subroutine, then resume the former

process.
For - Next Repeat the instruction between For and Next.
If Then Else Decide the condition of logical expression.
Delay Break temporarily the execution of job.
Wait Wait until conditions are satisfied.
TimeOut Get the result of timeout by Wait command.
On GoTo Jump one of specified step.
On GoSub Call one of specified subroutines.
Select Case Evaluate an expression and execute the

processing block.

Definable
instruction

Flow control

InitGoSub Initialize the subroutine-call stack.
On Error GoTo Specify the destination at error.
Resume Terminate error process, then resume the

former process.

Interrupt
control
instruction

Error control

Err Hold error code.
Job Start
Job On
Job Off

Control job execution.

GetPriority Get the running priority of the current job.

Job control

SetPriority Set the running priority of the current job.
Move Move a robot to specified coordinates.
Set Set operating characteristic data of a robot.
Ref Deal data inside of a robot.
Seq - SeqEnd Set or terminate robot sequence mode.
Finish Complete MOVE in sequence mode.
Hold Specify or cancel the servo lock of the robot.
Disable Inhibit robot movement.
Enable Allow robot movement
Calib Execute automatic origin calibration.
SetRobNo Set a robot number for the current job.
ClearRobNo Clear the robot number for the current job.
GetRobNo Get the robot number for the current job.
EnableOnlineErr Enable robot ONLINE mode check.
DisableOnlineErr Disable robot ONLINE mode check.
RobCheckBpZone Check robot position within BP/ZONE.
RobCheckCurPos Check robot position nearby teaching data.
RobCheckStop Check robot stopped.
RobClearErr Clear robot errors.
RobSetPosRange Define allowable margin of position.
Inching Execute inching motion.

Control
instruction

Robot control

AxesPara Make axes parameter.

9 Commands

9-2

Kind Usage Description Function
PosRec Make one robot position record.
CollisionCheck Enable or disable collision check between robots.
RobWorldPos Get current robot position in the world

coordinates system.
RobDistance Get the distance between two robots.
RobGetCurSpeed Get the current robot speed.
RobGetCurTorq Get the current robot torque.
RobGetCurAveTorq Get the current effective torque of a robot.
RobGetCurPos Get the current encoder position of a robot.
RobReadSvoPara Read servo parameter of a robot.
RobWriteSvoPara Write servo parameter of a robot.
RobReadSG Read system generation data of a robot.
RobWriteSG Write system generation data of a robot.
Open Open a communication file.
Close Close a file.
Input$ Read the specified length of the string from a

file.
Input # Substitute data of a sequential file to a variable.
Line Input # Read one line from a sequential file.
Print # Output data to a file.
Eof Examine the termination code of a file.
FreeFile Get unused file number.
RchkHrcs Check a HRCS protocol frame received.
ReadHrcs Read a HRCS protocol frame.
WriteHrcs Write a HRCS protocol frame.
EnableDSRCheck Enable DSR signal check of RS232C.
DisableDSRCheck Disable DSR signal check of RS232C.
EnableRTSAuto Enable automatic RTS signal control of RS232C.
DisableRTSAuto Disable automatic RTS signal control of

RS232C.
ComFunction Control RS232C signal.

File control

GetComStatus Get signal status of RS232C.
Pulse
generation

Pulse Generate pulse. (Substitute a value for the
specified period.)

Time$ Get or set the current system time. Clock control
Date$ Get or set the current system date.
NetOpen Open a network communication.
NetClose Close a network communication.
NetRead Read data from a network communication.

Network
instruction

Network
communicati
on

NetWrite Write data from a network communication.
Sin Get sine.
Cos Get cosine.
Tan Get tangent.
Atn Get arctangent.
Sgn Get the sign of value.
Abs Get absolute value.
Int Remove decimals
Fix Remove decimals
Log Get natural logarithms.
Exp Get e raised to a power.

Arithmetic
function

Sqr Get square root.
Mod Execute arithmetic division and get the

remainder.
Not Execute negation.
And Execute logical multiplication.
Or Execute logical addition.
Xor Execute exclusive logical addition.
Eqv Execute logical equivalence.

Operator

Imp Execute logical implication.

Conversion
instruction

Arithmetic
Constant

Pai Get the value of pi.

9 Commands

9-3

Kind Usage Description Function
Left$ Pick out arbitrary length from the left of a

string.
Mid$ Specify one part of a string.
Right$ Pick out arbitrary length from the right of a

string.
Space$ Get a string with the arbitrary length blank.
Chr$ Get the character of specified character code.
String$ Get the character string connected one arbitrary

character.
Hex$ Get the character string converted decimal into

hexadecimal.
Str$ Convert numerical value into a string.
Val Convert the number of a character string into

actual value.
Asc Get the character codes of characters.
Len Get the length of a string.
InStr Get the first position of the string in another

string.
ScanStr Scan string data according to specified format.

And get the value as parameter from string by
operator in the format.

Character

PrintStr Print string data according to specified format.
And put the data string of specified parameter
by operator in the format.

Initialization Operation of
position
memory in
STP

InitPos Initialize position memory in STP.

ConsoleMsgOn Enable to print message to STP console.
ConsoleMsgOff Disable to print message to STP console.

Message Print to STP
console

ConsoleMsg Print specified message to STP console.

9 Commands

9-4

9.2 How to Read Command Explanation
After the next section, all commands of HrBasic language are explained.
Each explanation has the following structure.

Comamnd-name (Type)

Note) There are the following command types.
Statement Command without return value.

Declaration included.
Function Command with return value.
Operator Executes calculation of two values.

 Function
Function of the command is described.

 Format
This shows how to describe the command. Actual writing the code needs
the following rules.

1) There is the case that the explanation uses two lines for the
command, but actual programming has to be written in one line.

2) When typing in the commands, there are no difference between the
uppercase and lowercase letters. However, in case of the character
enclosed by double quotation marks (") except for the file name,
distinguish between the uppercase and lowercase letters of
alphabet.

3) When the space () is specified, enter a blank as one character.

4) Item of Italics has to be specified by a user.

5) The items enclosed by square brackets "[]" except
[rno:robot-number] are optional and can be omitted. When omitting
the bracket, the default value (the value which has already set in
HrBasic) or the value specified before is applied.

6) The symbols, except for "[]", parentheses "()", comma (","),
semicolon (";"), minus symbol and equal symbol ("=") etc must be
typed in the specified place.

7) The item which has ellipsis (...) can be repeated within the
allowable length of one line. (255 characters at the maximum)

Example)
Constant [, Constant…] In this case 0, 10, 15

 Example
This shows a simple example for the usage of the command.

 Explanation
This explains the details of function, notice and usage of command.

9 Commands

9-5

9.3 Explanation of Each Command

Abs (Function)

 Function
Gets the absolute value.

 Format
Abs(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Value of a number

Return value Absolute value

 Example
b% = Abs(-2) ‘ 2 is substituted for b%

 Explanation
The absolute value of Numeric-expression is returned.

9 Commands

9-6

And (Operator)

 Function
Executes a logical multiplication of two numbers.

 Format
Numeric-expression#1 And Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = &H000F%
b% = &H0FFF%
c% = a% And b% ‘ &H000F% substituted for c%

 Explanation

• The following calculation is performed.
X Y X and Y
1 1 1
1 0 0
0 1 0
0 0 0

• See “6.4.3 Logical Operator”.

9 Commands

9-7

Asc (Function)

 Function
Gets the ASCII character code.

 Format
Asc(String)

 Argument and Return value
Parameter Explanation

Argument String Character string
Return value ASCII code (&H00 to &HFF)

 Example
a%=Asc("A") ‘65(&H41) for “A” is substituted for b%.

 Explanation
The ASCII code for the first character of String is returned.

 See also Chr$.

9 Commands

9-8

Atn (Function)

 Function
Gets the value of arctangent.

 Format
Atn(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Value of the ratio of B to A in the following
right triangle.

Angle
A
BAtn =)(A

B
Angle

Return value Arctangent value by radian.

 Example
a! = Atn(y!/x!) ‘Arctangent of y!/x! is substituted for a!.

 Explanation
The Atn function returns the angle whose tangent is Numeric-expression.
The range of the value is returned from -pi/2 through pi/2 in radians.

 See also Cos, Sin, Tan.

9 Commands

9-9

AxesPara (Function)

 Function
Converts the specified parameters of each axis to the axes parameter in
long integer.

 Format
AxesPara(X-axis, Y-axis, Z-axis, W-axis, R-axis, C-axis)

 Arguments and Return value
Parameter Explanation

X-axis X axis parameter as a numeric expression.
Valid number is 0 through 9.

Y-axis Y axis parameter as a numeric expression.
Valid number is 0 through 9.

Z-axis Z axis parameter as a numeric expression.
Valid number is 0 through 9.

W-axis W axis parameter as a numeric expression.
Valid number is 0 through 9.

R-axis R axis parameter as a numeric expression.
Valid number is 0 through 9.

Arguments

C-axis C axis parameter as a numeric expression.
Valid number is 0 through 9.

Return value Axes parameter by long integer type

 Example
axes& = AxesPara(1, 2, 3, 4, 5, 6) 'Converted to 123456 (decimal).

 Explanation
♦ AxesPara function returns the long integer value calculated by the

following formula.
Axes parameter = X axis parameter * 100000 +
 Y axis parameter * 10000 +
 Z axis parameter * 1000 +
 W axis parameter * 100 +
 R axis parameter * 10 +
 C axis parameter

♦ If each axis parameter is out of range, an error occurs at execution.
♦ If the return value is substituted for 16 bits variable with type

declaration “%”, there is a possibility that overflow error occurs.

 See also Inching.

9 Commands

9-10

Calib (Statement)

 Function
Executes the automatic origin calibration (A-CAL) of robot.

 Format
Calib #File-number[[rno:Robot-number]][, Axes-bits][, NoWait]
Note) “AxesBits=” is supported by HNC-580 series and HAC-8XX

controller.

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication
port must be specified. Valid range is from 0
through 47.
In case of variable, "#" can be omitted but in case of
a numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is
1 through 999. See chapter 8 about the robot
number. It can be specified as a number or variable.
If the robot number is omitted, the number
registered by SetRobNo function is used as the
current robot number.

Axes-bits

Calibrating robot axes can be specified by bits.
Axes bit assignment is shown below.

Example)
&H1B --- Calibrate X, Y, W and R axis.
If omitted, all implemented axes are calibrated
simultaneously. It can be specified as a number or
variable.

NoWait

If keyword “NoWait” is specified, the program goes
to the next step, not waiting for the completion of
moving. In this case, robot motion completed has to
be confirmed by a program.

 Example
‘Calibrate all axes of robot #1.
Calib #1[rno:1]
‘Calibrate X axis of robot #2.
robno% = 2
Calib #1[rno:robno%], AxesBits=&H1
‘Calibrate X, Y axis of robot #3 without waiting to complete motion.
robno% = 3
axes% = &H3
Calib #1[rno:robno%], AxesBits=axes%, NoWait

 Explanation
♦ To move the robot to the position exactly, it is necessary that the

memorized origin position in a robot controller equals the
mechanical position of a robot. A-CAL automatically executes the

X Y Z WRC
5 4 3 2 1 0

9 Commands

9-11

equalization of both origin positions to move a robot to the origin
position.

♦ A robot with incremental encoder needs A-CAL when power on
because the memorized origin position was cleared when power off.

♦ Generally, a robot with absolute encoder needs A-CAL only when
installed because the memorized origin position always held
without regard to power on or off.

♦ A-CAL can be executed by a teaching pendant connected with a
robot controller.

♦ A program can check A-CAL completion to refer to A-CAL flag of
robot status as follows. (See “4.2.8 STATUS”.)

< Checking A-CAL completion >
A-CAL flag is assigned in STATUS9.

STATUS9

7 6 5 4 3 2 1 0

&H80&H40&H20&H10 &H8 &H4 &H2 &H1

Bit no.

Bit value

1: A-CAL completed
0: not completed

The following example program executes A-CAL if a robot has not
been calibrated.
If (Ref(#1,STATUS9) and &H4) =0 Then Calib #1

♦ Without execution of A-CAL, the moving command such as Move
statement results in a job error.

As above example, “Ref(#1,STATUS9) and &H4” has to be enclosed by
parentheses. Without parentheses, the program is compiled as “Ref(…) and
(&H4=0)” and it does not work correctly.

! Note

9 Commands

9-12

Chr$ (Function)

 Function
Gets the character string of the specified ASCII character code.

 Format
Chr$(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

ASCII code of a character.

Return value A string with the specified ASCII code.

 Example
a$ = Chr$(65) ‘ “A” with ASCII code 65 is substituted for a%

 Explanation
If the value of Numeric-expression is not from 0 through 255, a job error
occurs.

 See also Asc.

9 Commands

9-13

ClearRobNo (Function)

 Function
Clears a default robot number defined in the current job and the current
job becomes state without a robot number.

 Format
ClearRobNo()

 Argument and Return value
Parameter Explanation

Argument Nothing
Return value Nothing

 Example
Open “COM0” As #1 RobType=580 RobNoList=1,2,3 ‘for HNC-580
Open “COM1:9600,E,7,1” as #2 ‘for HNC-3XX/544
SetRobNo(2) ‘Set default robot no. #2
Move #1,PTP,PM101 ‘Move COM0 robot #2 to PM101
ClearRobNo() ‘Clear robot no.
Move #2,PTP,PM110 ‘Move COM1 robot to PM110

 Explanation
♦ SetRobNo function sets a default robot number for the current job.
♦ ClearRobNo clears a default robot number for the current job to set

the value -1. Then a robot control without a robot number is
enabled.

♦ After ClearRobNo function executed, GetRobNo function returns
the value -1.

♦ See chapter 8 about usage of a robot number.
♦ Just after power on or program downloaded, all job starts without a

robot number.

 See also GetRobNo, SetRobNo.

9 Commands

9-14

Close (Statement)

 Function
Closes a file.

 Format
Close[#File-number]

 Argument
Parameter Explanation

File-number
A file number assigned by Open statement. Valid range
is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

 Example
Close
Close #1

 Explanetion
♦ Close statement closes the file opened by Open statement. After a

file is closed, the file cannot be accessed till it is opened.
♦ If File-number is omitted, all opened files in the system are closed.
♦ After a file is closed, the file number assigned for the closed file can

be reused to open a file. And the closed file can be reopened using
any file number.

 See also Open.

9 Commands

9-15

CollisionCheck (Statement)

 Function
Enables or disables the collision check between the robots.

 Format
CollisionCheck On
CollisionCheck Off

 Argument
Parameter Explanation

On To specify “On”, the collision check is enabled.
Off To specify “Off”, the collision check is disabled.

 Example
CollisionCheck On
CollisionCheck Off

 Explanation
♦ Now, only HAC-8XX supports the collision check. CollisionCheck

statement can be executed on other controller or STP, but it returns
to do nothing.

♦ After power on or program downloaded, the system starts to disable
the collision check.

♦ The correct execution of the collision check needs to set the
definition of the collision check to HAC. Refer to the document
about the collision check.

♦ When the robot collision is detected, “Robot collision detected” error
occurs in the job that has executed Move statement.

9 Commands

9-16

ComFunction (Statement)

 Function
Controls a RS232C signal.

 Format
ComFunction #File-number, Signal-name, Value

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Signal-name

To specify “RTS”, RTS signal of RS232C is controlled.
To specify “DTR”, DTR signal of RS232C is controlled.
To specify the expression except above, a compiling
error occurs.

Value Variable or numeral constant can be specified. The
value has to be 0 or 1.

 Example
‘Output 1 to RTS signal of COM1 port
fno% = 1
data% = 1
Open “COM1:38400,E,8,1” As #fno%
ComFunction #fno%, RTS, data%

 Explanation
♦ RTS (Request To Send) signal is implemented at the 7th pin in

D-SUB 9 pins. DTR (Data Terminal Ready) signal is implemented
at the 4th pin in D-SUB 9 pins. These are the output signals.

♦ In HAC, 1 is set to RTS and DTR signal when power on of HAC.
♦ In WinSTP, 0 is set to RTS and DTR signal when WinSTP starts.
♦ Generally, these signal need not to be controlled by a program. But,

in case that a program needs to control the signals, ComFunction
statement is useful for it.

 See also EnableRTSAuto, DisableRTSAuto, GetComStatus.

9 Commands

9-17

ConsoleMsg (Function)

 Function
Prints a message to STP console.

 Format
ConsoleMsg(String)

 Argument and Return value
Parameter Explanation

Argument String A character sting to print
Return value Nothing

 Example
ConsoleMsgOn ‘ Enable to print to console.
ConsoleMsg(“TEST”) ‘ Print “TEST” to console.
ConsoleMsgOff ‘ Disable to print to console.

 Explanation
♦ ConsoleMsg function prints the specified string to STP console.
♦ Codes of carriage return and line feed are added to the specified

string automatically.
♦ Console means the following equipment according to STP type.

STP type Console
HAC-8XX VGA monitor
WinSTP Console window

In HAC-8XX, console output takes several milliseconds to print ten characters
and it stops the job execution. Therefore, it is recommended that console output
is used for debugging and disabled when actual working.

♦ After STP system starts and a program is downloaded, console

output is disabled automatically.
♦ ConsoleMsgOn statement enables to print to console and

CosoleMsgOff statement disables to print to it.
♦ During console output disabled, ConsoleMsg function returns

immediately without output operation.

 See also ConsoleMsgOn, ConsoleMsgOff.

! Note

9 Commands

9-18

ConsoleMsgOff (Statement)

 Function
Disables to print a message to STP console.

 Format
ConsoleMsgOff

 Argument
Parameter Explanation

Argument Noithing

 Example
ConsoleMsgOn ‘ Enable to print to console.
ConsoleMsg(“TEST”) ‘ Print “TEST” to console.
ConsoleMsgOff ‘ Disable to print to console.

 Explanation
♦ After ConsoleMsgOn statement is executed, ConsoleMsg function

returns immediately without output operation.
♦ Console means the following equipment according to STP type.

STP type Console
HAC-8XX VGA monitor
WinSTP Console window

♦ ConsoleMsgOn statement enables to print a message to STP
console.

 See also ConsoleMsg, ConsoleMsgOn.

9 Commands

9-19

ConsoleMsgOn (Statement)

 Fuanction
Enables to print a message to STP console.

 書式
ConsoleMsgOn

 Argument
Parameter Explanation

Argument Noithing

 Example
ConsoleMsgOn ‘ Enable to print to console.
ConsoleMsg(“TEST”) ‘ Print “TEST” to console.
ConsoleMsgOff ‘ Disable to print to console.

 Explanation
♦ After ConsoleMsgOn statement is executed, ConsoleMsg function

prints a message to STP console.
♦ Console means the following equipment according to STP type.

STP type Console
HAC-8XX VGA monitor
WinSTP Console window

♦ ConsoleMsgOff statement disables to print a message to STP
console.

 See also ConsoleMsg, ConsoleMsgOff.

9 Commands

9-20

Cos (Function)

 Function
Gets the value of cosine.

 Format
Cos(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Angle by radian.

Return value Cosine of the specified value is returned. The
value is from -1.0 through +1.0.

 Example
c! = Cos(3.1415! / 2!) ‘ Cosine of (3.1415! / 2!) is substituted for c!

 Explanation
The ratio of “B” to “A” is returned specifying the angle “Angle” in the
figure.

A
BAngleCos =)(

A

B

Angle

 See also Atn, Sin, Tan.

9 Commands

9-21

Date$ (Statement)

 Function
Sets date to the system calendar.

 Format
Date$ = Date-string

 Argument
Parameter Explanation

Argument Nothing

 Example
Date$=”03/03/10” ‘ Set 10.March 2004 to system calendar.

 Explanation

♦ This statement is used at the left side of substitution.
♦ The substituted string of a constant or variable has to be the

following format.
 “yy/mm/dd”

Year (00 - 99)
Month (01 - 12)
Day (01 - End)

 See also Date$ (function), Time$.

9 Commands

9-22

Date$ (Function)

 Function
Gets current date of the system calendar.

 Format
Date$

 Argument and Return value
Parameter Explanation

Argument Nothing

Return value
A sting that contains current date with the following
format.
 ”yy/mm/dd”

 Example
b$ = Date$ ‘ Current date is substituted for b$.

 Explanation
If the system time becomes “00:00:00”, the system date changes to the
next day.
The value of Date$ is a string data, but it is not available in the string
expression combined with string operators. For example, a$=Date$+b$ is
not available. In this case, a program has to be described as follows.

d$ = Date$
a$ = d$ +b$

 See also Date$ (statement), Time$.

9 Commands

9-23

Define (Statement)

 Function
Defines the specified name as the specified constant.
The statement can be described only in a header file (suffix .hed).
The defined constant name can be used in a program after a program
reads a include file by Include statement.

 Format
Define Definition-name Constant

 Arguments
Parameter Explanation

Definition-
name

Specify an arbitrary name within sixteen alphabetic or
numeric characters or period (.).

Constant A number or string by literal.

 Example
Define I.START 10 ‘ Input#10: Start button
Define ML.COUNT 102 ‘ ML(102): Running count
Define Z.UP 5.12! ‘ Z-axis up-motion length
Define ROB.COM “COM1:19200,E,7,1”

‘ Robot communication parameter

 Explanation

Definition-name does not care which case the character is. However, in general
programming rules, it is recommended to describe all of Definition-name by
upper case.

♦ A program can use Definition-name by means of reading a header
file by Include statement that is described at the starting part of a
job program where any executable sentence has not been described
yet.

♦ Definition-name in a source program (.bas) is replaced with
Constant during compilation. Both Definition-name and Constant
are outputted to a list file (.lst) created after compilation.

♦ If a constant is frequently used in a program, the program
modification is very easier to define the equivalent constant name
by Define statement and to use it in a program, because only the
Define sentence has to be modified and then the program has to be
re-compiled it.

It is recommended that a constant, with a possibility of modification in the
future, has to be defined by Define statement, even if the constant is used only
one time in the program.

♦ If the definition name is spelled wrongly in a source program, a
compiler treats it as a variable and then links. Ordinarily, this
program cannot work well. In this case, the warning “Type
declaration character is not found. A single precision real type is
assumed for the variable.” and “Value is not assigned to this
variable.” are displayed on compilation. To be careful to the
message on compilation, check the program, remove all warnings,
and then run the program.

!
Guideline for
Programming

!
Guideline for
Programming

9 Commands

9-24

 See also Include, “Chapter 3 Program Development Guideline”.

9 Commands

9-25

Delay (Statement)

 Function
Breaks the program execution of the current job temporarily.

 Format
Delay Numeric-expression

 Argument
Parameter Explanation

Numeric-
expression

The time to break the job execution by seconds. Valid time
is from 0.000 sec through 2147483.647 sec. Minus value
cannot be specified.

 Example
Delay 1.5 ‘ Break this job for 1.5 sec.

 Explanation
♦ The current job execution is broken for the specified period. After

the specified time passes, the next step is executed.
♦ Other job is not influenced for running by the execution of this

statement.
♦ During Dalay breaking, if Job Off statement is executed, the timer

for Delay is suspended. After job restarts by Job Off statement, the
timer is restarted.

9 Commands

9-26

Dim (Statement)

 Function
Declares an array variable and assign memory area to the variable.

 Format
Dim Variable-name(Upper1 [,Upper2 [,Upper3]])
 [,Variable-name(Upper1 [,Upper2 [,Upper3]]), …]

 Argument
Parameter Explanation

Variable-Name Variable name to use as an array.

Upper1
Upper2
Upper3

A maximum subscript number of an array.
A minimum subscript number is always zero. Therefore,
number of array elements is Upper+1 for one
dimension.
The dimensions of array are available up to three.

 Example
Dim a!(12, 2), b$(3), c%(1,2,4)

 Explanation
♦ Number of array elements or dimensions has the limitation of

volume of the system memory.
♦ Greater subscript than the declared is specified in a program, a

compiling error “Subscript out of range” or a job error “Array
accessed out of range” occurs.

Naming rule of variable is shown below.
 Variable name has to consist of alphabets or numerals.
 Length of variable name has to be 16 bytes or less including a type

declaration character.
 Variable name cannot be the reserved namei, but a part of variable name

can be the reserved name. It is not cared which case of alphabets variable
name has.

 In case that the two variable names equal, if type declaration characters
differ, the compiler distinguishes the two variables. Type declaration
character is added to the end of variable name.

 If type declaration character is omitted, the compiler decides that the
variable is single precision real-number type as if “ ! “ is added.

 See “6.2.2 Array Variable”.

i Reserved name is keyword of HrBasic language, such as name of statement (e.g. Mid, If), name
of function (e.g. Len, Abs), and operator (e.g. Or, Mod).

! Note

9 Commands

9-27

DimNet (Statement)

 Function
Declars a network global variable.

 Format
DimNet Variable-name[(Upper1 [,Upper2 [,Upper3]])]
 [,Variable-name[(Upper1 [,Upper2 [,Upper3]])], …]

 Argument
Parameter Explanation

Variable-Name Variable name to use as a network global variable.

Upper1
Upper2
Upper3

To declare a network global variable as array, specify
a maximum subscript number of an array.
A minimum subscript number is always zero.
Therefore, number of array elements is Upper+1 for
one dimension.
The dimensions of array are available up to three.

 Example
DimNet ng.Name$(10), ng.Port%(3,4), ng.Mode%

 Explanation
♦ To use network global variable needs to create the network

definition and download it to STP. Refer to HBDE operation
manual or help about details.

♦ A network global variable shares the value of a variable used in
STPs connected in the network. If each program in STP declares
the network global variable, all programs in the network can read
or write it.

Naming rule of variable is shown below.
 Variable name has to consist of alphabets or numerals.
 Length of variable name has to be 16 bytes or less including a type

declaration character.
 Variable name cannot be the reserved namei, but a part of variable name

can be the reserved name. It is not cared which case of alphabets variable
name has.

 In case that the two variable names equal, if type declaration characters
differ, the compiler distinguishes the two variables. Type declaration
character is added to the end of variable name.

 If type declaration character is omitted, the compiler decides that the
variable is single precision real-number type as if “ ! “ is added.

 See “6.2.3 Local Variable, Global Variable and Network Global
Variable”.

i Reserved name is keyword of HrBasic language, such as name of statement (e.g. Mid, If), name
of function (e.g. Len, Abs), and operator (e.g. Or, Mod).

! Note

9 Commands

9-28

DimPos (Statement)

 Function
Declares usage and size of P memory that the current job uses.

 Format
DimPos Number-of-Ps

 Argument
Parameter Explanation

Number-of-Ps Number of P records that the current job uses. Invalid
value is from 1 through 8000.

 Example
DimPos 1000
InitPos 0 to 999

 Explanation
♦ P memory is common for all jobs. But the number of P memory

records is declared to use in each job. The above example declares
that a job uses 1000 records of P memory from P0 through P999.

♦ Even if other job declares greater number of P memory, a job can
used up to the number which a job has declared.

♦ Generally, P records hav to be accessed after InitPos statement has
initialized them.

 See also InitPos, “4.2.5 P and Its Structure”.

9 Commands

9-29

Disable (Statement)

 Function
Inhibits robot movement.

 Format
Disable #File-number[[rno:Robot-number]]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication
port must be specified. Valid range is from 0
through 47.
In case of variable, "#" can be omitted but in case of
a numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is
1 through 999. See chapter 8 about the robot
number. It can be specified as a number or variable.
If the robot number is omitted, the number
registered by SetRobNo function is used as the
current robot number.

 Example
Disable #1[rno:1]

 Explanation
♦ Disable statement stops a robot immediately and inhibits it to

move.
♦ While a robot is moving by Move statement, Disable statement

stops a robot motion. Executing Move statement is interrupted and
returns immediately to go to the next step.

♦ A program can confirm that a robot is disabled or not by reference
to STATUS8. STOP flag becomes ON during disabled state.

 Bit no.

Bit value

1: ON-LINE mode
1: MANUAL mode
1: AUTO mode
0: Reserved
1: Sequence mode
1: STOP ON / 0: STOP OFF
1: ES (Emergency Stop)
0: Reserved

7 6 5 4 3 2 1 0

&H80 &H40 &H20&H10 &H8 &H4 &H2 &H1

♦ After a robot disabled by Disable statement, the execution of

Enable statement has be required before a robot restarts to move.
♦ A job error occurs when a robot restarts to move without the

execution of Enable statement.

9 Commands

9-30

DisableDSRCheck (Statement)

 Function
Disables DSR signal check of RS232C.

 Format
DisableDSRCheck COM-number

 Argument
Parameter Explanation

COM-number COM port number by numeric expression.
Valid number is from 0 through 9.

 Example
DisableDSRCheck 2 ‘ Disable DSP check of COM2
comno% = 3
DisableDSRCheck comno% ‘Disable DSP check of COM3

 Explanation
♦ If the specified COM is a RS232C port, DSR signal check of

RS232C is disabled. If it is not RS232C, the statement returns
without operation.

♦ After STP system restarts or a program is downloaded, DSR check
is automatically enabled for all RS232C ports.

♦ DSR (Data Set Ready) signal (the 6th pin of D-SUB 9 pins) is the
input signal for STP to check the disconnection of RS232C.

♦ If DSR check is enabled, STP checks DSR ON when data is
transmitted to RS232C. If it is OFF, STP raises a job error “COM
line not connected”.

 See also EnableDSRCheck.

9 Commands

9-31

DisableOnlineErr (Statement)

 Function
Disables robot ONLINE check. Even if ONLINE mode is off during robot
motion, a job error does not occur.

 Format
DisableOnlineErr

 Argument
Parameter Explanation

Argument Nothing

 Example
DisableOnlineErr 'Disable ONLINE check
'Run without job error if ONLINE is off during robot motion.
robno% = 1 ‘Robot #1
Seq #1
 Move #1[rno:robno%], PM1
 Finish #1[rno:robno%]
*LOOP

'Check ONLINE
 If (Ref(#1[rno: robno%], STATUS8) and &H1) = 0 Then
 GoTo *ONLINE.ERR
 EndIf
 'Check positioning completion
 If (Ref(#1[rno:robno%], STATUS9) and &H2) <> &H2 Then

GoTo *LOOP
 EndIf
SeqEnd #1[rno:1]
EnableOnlineErr 'Enable ONLINE check

 Explanation
When STP system starts or a program is downloaded, the system starts
to enable robot ONLINE check. In this state, a job error occurs if robot
ONLINE becomes off during the execution of Move statement.
DisableOnlineErr disables robot ONLINE check during the execution of
normal Move or sequence mode Move. A job error never occurs even if
ONLINE mode is OFF. DisableOnlineErr is useful for the case such as a
program needs to check ONLINE during the motion in sequence mode.
EnableOnlineErr statement enables robot ONLINE check.
DiableOnlineErr statement is effective to the current job.

 See also EnableOnlineErr.

9 Commands

9-32

DisableRTSAuto (Statement)

 Function
Disables automatic RS232C RTS signal control.

 Format
DisableRTSAuto COM-number

 引数
Parameter Explanation

COM-number COM port number by numeric expression.
Valid number is from 0 through 9.

 Example
‘ Disable automatic RTS signal control of COM2
DisableRTSAuto 2
‘ Disable automatic RTS signal control of COM3
comno% = 3
DisableRTSAuto comno%

 Explanation
♦ If the specified COM is a RS232C port, automatic RTS signal

control is disabled. If it is not RS232C, the statement returns
without operation.

♦ After STP system starts or a program is downloaded, automatic
RTS signal control is disabled for all RS232C ports.

♦ RTS (Request To Send) signal (the 7th pin of D-SUB 9 pins) is the
output signal for STP. About detail of automatic RTS signal control,
refer to EnableRTSAuto statement.

♦ If DSR check is enabled, STP checks DSR ON when data is
transmitted to RS232C. If it is OFF, STP raises a job error “COM
line not connected”.

 See also EnableRTSAuto.

9 Commands

9-33

Enable (Statement)

 Function
Allows robot movement.

 Format
Enable #File-number[[rno:Robot-number]]

 Arguments
Parameter Explanation

File-number
A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

 Example
Enable #1[rno:1]

 Explanation
♦ Enable statement enables a robot to move and allows robot

movement.
♦ If a robot has received Disable command, it never starts to move by

a motion command. It is required that Enable command is
transmitted to a robot before motion.

♦ A program can confirm that a robot is enabled or not by reference
to STATUS8. STOP flag becomes OFF during enabled state.

 Bit no.

Bit value

1: ON-LINE mode
1: MANUAL mode
1: AUTO mode
0: Reserved
1: Sequence mode
1: STOP ON / 0: STOP OFF
1: ES (Emergency Stop)
0: Reserved

7 6 5 4 3 2 1 0

&H80 &H40 &H20&H10 &H8 &H4 &H2 &H1

 See also Enable.

9 Commands

9-34

EnableDSRCheck (Statement)

 Function
Enables DSR signal check of RS232C.

 Format
EnableDSRCheck COM-number

 Argument
Parameter Explanation

COM-number COM port number by numeric expression.
Valid number is from 0 through 9.

 Example
EnableDSRCheck 2 ‘ Enable DSP check of COM2
comno% = 3
EnableDSRCheck comno% ‘ Enable DSP check of COM3

 Explanation
♦ If the specified COM is a RS232C port, DSR signal check of

RS232C is enabled. If it is not RS232C, the statement returns
without operation.

♦ After STP system restarts or a program is downloaded, DSR check
is automatically enabled for all RS232C ports.

♦ DSR (Data Set Ready) signal (6th pin of D-SUB 9 pins) is the input
signal for STP to check the disconnection of RS232C.

♦ If DSR check is enabled, STP checks DSR ON when data is
transmitted to RS232C. If it is OFF, STP raises a job error “COM
line not connected”.

 See also DisableDSRCheck.

9 Commands

9-35

EnableOnlineErr (Statement)

 Function
Enables robot ONLINE check. If ONLINE mode is off during robot
motion, a job error occurs.

 Format
EnableOnlineErr

 Argument
Parameter Explanation

Argument Nothing

 Example
EnableOnlineErr ‘ Enable ONLINE check
‘ Job error occurs if robot ONLINE becomes off.
Move #1, PTP, PM1

 Explanation
EnableOnlineErr statement enables robot ONLINE check during the
execution of normal Move or sequence mode Move. A job error occurs if
robot ONLINE mode becomes OFF during robot motion.
When STP system starts or a program is downloaded, the system starts
to enable robot ONLINE check.
DisableOnlineErr statement disables robot ONLINE check. After
DisableOnlineErr is executed, EnableOnlineErr statement can enable
ONLINE check.
EnableOnlineErr statement is effective to the current job.

 See also DisableOnlineErr.

9 Commands

9-36

EnableRTSAuto (Statement)

 Function
Enables automatic RS232C RTS signal control.

 Format
EnableRTSAuto COM-number, Control-type

 引数
Parameter Explanation

COM-number COM port number by numeric expression.
Valid number is from 0 through 9.

Control-type

RTS control type by numeric expression. The following
numbers of types are supported now.
0: RTS signal ON during transmission
1: RTS signal OFF during transmission

 Example
‘ COM2 RTS signal OFF during transmission
EnableRTSAuto 2, 1
‘COM3 RTS signal ON during transmission
comno% = 3
type% = 0
EnableRTSAuto comno%, type%

 Explanation
♦ If the specified COM is a RS232C port, the specified type of

automatic RTS signal control is enabled. If it is not RS232C, the
statement returns without operation.

♦ After STP system starts or a program is downloaded, automatic
RTS signal control is disabled for all RS232C ports.

♦ RTS (Request To Send) signal (the 7th pin of D-SUB 9 pins) is the
output signal for STP, and it becomes ON after STP system starts.
For an interface conversion from RS232C to RS485 or RS422, for
example, there is a case to control the RTS signal to OFF during
data transmission. For such case, EnableRTSAuto statement can be
available.

♦ RTS control type #0
RTS signal becomes automatically ON during data transmission.
Even if the transmission is completed, the RTS signal continues to
be ON.

♦ RTS control type #1

RTS signal becomes automatically OFF during data transmission.
After the transmission is completed, the RTS signal is resumed to
ON automatically.

Power
ON

Open

Transmission

Close

RTS ON

OFF

9 Commands

9-37

♦ While automatic RTS control is disabled, RTS signal is controlled

as the type #0.

 See also DisableRTSAuto.

Power
ON

Open Transmission Close

RTS ON

OFF

9 Commands

9-38

Eof (Function)

 Function
Examines the termination code of a file. This code is called “End of file”.

 Format
Eof(File-number)

 Argument and Return value
Parameter Explanation

Argument File-
number

A file number assigned by Open statement. Valid
range is from 0 through 47.

Return value If end of file is detected, true value (-1) is
returned. If not, false value (0) is returned.

 Example
a$=Input$(1, #1)
If Eof(1) Then GoTo *ENDFILE

 Explanation
♦ If the specified file number indecates a communication port, Eof

function returns the true value when the received buffer is empty
or any data is received.

♦ If the specified file number indecates a normal file, Eof function
returns the true value when all data in the file is read and there is
no data to read.

9 Commands

9-39

Eqv (Operator)

 Function
Executes a logical equivalence of two numbers.

 Format
Numeric-expression#1 Eqv Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = &H000F%
b% = &H0FFF%
c% = a% Eqv b% ‘ &HF00F% substituted for c%.

 Explanation

• The following calculation is performed.
 X Y X eqv Y

1 1 1
1 0 0
0 1 0
0 0 1

• See “6.4.3 Logical Operator”.

9 Commands

9-40

Err (Function)

 Function
Gets the last job error code.

 Format
Err

 Argument and Return value
Parameter Explanation

Argument Nothing
Return value Job error code

 Example
On Error GoTo *ERROR.ROUTINE
:
*ERROR.ROUTINE
 err.no%=Err

 If err.no%=7 Then GoTo *ERR7

 Explanation
♦ Err function returns the last job error code which a job has

memorized.
♦ A job stops running at the step where an error occurs. But, if an

error handler has been defined by On Error GoTo statement, a job
jumps to the error handler and then executes it.

♦ See “Appendix List of Job Error Code” about job error codes.
♦ Resume statement or Job Start statement clears the last error

memorized in a job.

 See also On Error GoTo, Resume.

9 Commands

9-41

Exp (Function)

 Function
Returns the value specifying e (the base of natural logarithms -
2.718282…) raised to a power.

 Format
Exp(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Power number by numeric expression.

Return value Value of exponential function.

 Example
x# = Exp(2.0) ‘ e to the 2.0 is substituted for x#

 Explanation
Exp function is the inverse function of Log function and is sometimes
referred to as the antilogarithm.

 See also Log.

9 Commands

9-42

Finish (Statement)

 Function
Completes robot motion in sequence mode to move z axis down.

 Format
Finish #File-number[[rno:Robot-number]]

 Arguments
Parameter Explanation

File-number
A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

 Example
Finish #1[rno:1]

 Explanation
♦ Between Seq and SeqEnd statement, robot motion by Move

statement differs from the normal motion of Move statement. (See
“Seq - SeqEnd statement”.) As the following figure, when a robot
moves to A-B-C-D, a robot stops at C position without down-motion
of Z axis and waits for Finish command.

A

CB

DA

CB

D A

CB

D
Move Finish

Normal Move Move between Seq and SeqEnd statement

Example)
Move #1[rno:1], pm0

Example)
Seq #1[rno:1]
 Move #1[rno:1], pm0
 ' Check a work absence
 Wait INB(I.WORK2)=0
 Finish #1[rno:1]
SeqEnd #1[rno:1]

♦ Between Seq and SeqEnd statements, pair usage of Move

statement and Finish statement is required. Even if z axis is not
moved down, Finish command is necessary.

 See also Seq - SeqEnd.

9 Commands

9-43

Fix (Function)

 Function
Removes the fractional part of number and returns the resulting integer
value.

 Format
Fix(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Any value by numeric expression.

Return value Integer value.

 Example
a%=Fix(4.12) ‘ 4 is substituted for a%
b%=Fix(-4.12) ‘ -4 is substituted for b%

 Explanation
If the specified value is positive, Fix function returns the integer value
that is the same result of Int function.
If the specified value is negative, Fix removes the fractional part of
number, and then returns the integer value that is greater than and
nearest to the specified value.
On the other hand, Int function returns the integer value that is less
than and nearest to the specified value.

0 1
Less

-1-2 Greater

-1.5 Fix(-1.5)Int(-1.5)

 See also Int.

9 Commands

9-44

For…To…Step - Next (Statement)

 Function
Repeats the execution of a program between For and Next statement.

 Format
For Variable=Start-number To End-number[Step Increment]
 :
Next[Variable]

 Arguments
Parameter Explanation

Variable A variable for the condition of repetition.
Start-number A number of a variable to start repetition.
End-number A number of a variable to terminate repetition.
Increment Increment number of a variable.

 Example
‘ i%=0, 2, 4, …. ,96, 100 --- Repeats 51 times
For i%=0 to 100 Step 2
 :
Next i%

 Explanation
If “Step” is omitted, Increment is regarded as +1 implicitly.
Negative number can be specified to Increment.
The conditions to terminate repetition are shown below. If the condition
is satisfied, a program exits For-Next block to jump the next step of Next
statement.

8) Increment is positive and value of Variable is greater than
End-number.

9) Increment is negative and value of Variable is less than
End-number.

A For - Next block can be described in a For - Next block. This structure
is called nesting. There are the following notes for nesting.
♦ For statement and Next statement has to be used as a pair.
♦ Variables for repetition have to differ from each other.
♦ A For - Next block is completely included by another.
♦ Maximum number of nesting is 16.

9 Commands

9-45

 Generally, a variable for repetition should be 16 bits integer type (%) or 32
bits long integer type. In case of real type, there is a case that the infinite
repetition of For - Next happens because the precision of real values is
limited and then the condition to terminate is not satisfied.

 In coding rules of general programming languages including HrBasic, a
repetition variable is usually named as i%, j%, k%... However, this need
not apply if a variable name is necessary to be meaningful for
programming.

 Exaple)
 ‘ Standard programming
 For i%=1 To i.max%
 For j%=10 To j.max%
 For k%=0 To k.max%
 :
 Next k%
 Next j%
 Next i%
 ‘ A repetition variable is the equipment number
 For eqip.no%=1 To 10
 If MB(eqip.no%+100) = 1 Then
 :
 Next eqip.no%

◆ See also “7.1.3 Iteration Structure”

!
Guideline for
Programming

9 Commands

9-46

FreeFile (Function)

 Function
Gets a unused file number.

 Format
FreeFile()

 Argument and Return value
Parameter Explanation

Argument Nothing
Return value The least unused file number from 0 through 47.

 Example
fno%=FreeFile()
Open "COM1:115200,N,8,1" As #fno% 'Open COM1
Move #fno%, PTP, PM1 'Move a robot to address #1

 Explanation
If all file numbers used already, a job error occurs.

 See also Open.

9 Commands

9-47

GetPriority (Function)

 Function
Get the current priority of the specified job.

 Format
GetPriority(Job-name)

 Argument and return value
Parameter Explanation

Argument Job-name String type expression of a job name.
Return value Integer value of the job priority.

 Example
p1%=GetPriority(“robot1”)

 Explanation
♦ GetPriority function returns the current priority of the specified

job.
♦ See SetPriority function about the meaning of the priority.
♦ If the specified job is not found, job error occurs.

 See also SetPriority.

9 Commands

9-48

GetRobNo (Function)

 Function
Gets a robot number for the robot communication of a current job.

 Format
GetRobNo()

 Argument and Return value
Parameter Explanation

Argument Nothing

Return value

A robot number of a current job from 1 through 999.
After STP starts, a program is downloaded or
ClearRobNo function is executed, GetRobNo function
returns -1.

 Example
no%= GetRobNo ()

 Explanation
SetRobNo function sets a robot number of a current job. After a robot
number is set, it is not necessary to specify a robot number to robot
control commands such as Move, Calib or Seq and so on.
GetRobNo function returns a robot number set by SetRobNo function.

 See also SetRobNo, ClearRobNo.

9 Commands

9-49

Global (Statement)

 Function
Declares global variables.

 Format
Global Variable-name[, Variable-name[,…]]
 Array[, Array[,…]]
Array: Variable-name (Upper1[, Upper2[, Upper3]])

 Arguments
Parameter Explanation

Variable-
name

Variable name to use as a global variable.

Upper1
Upper2
Upper3

A maximum subscript number of an array.
A minimum subscript number is always zero. Therefore,
number of array elements is Upper+1 for one dimension.
The dimensions of array are available up to three.

 Example
Global g.Mode%, g.Name$, g.Table%(10, 20)

 Explanation
♦ A global variable in a job shares the memory area with other jobs

that declare the same global variable name. The jobs that declare a
global variable can read or write it at any time.

♦ If an array variable is used as global, the array does not need to be
declared by Dim statement, but has to be declared by Global
statement.

Global g.Array%(10, 20, 30)
♦ When a global variable is declared in some jobs, if the same name

variable is not declared as global in a job, the variable is treated as
local.

Naming rule of variable is shown below.
 Variable name has to consist of alphabets or numerals.
 Length of variable name has to be 16 bytes or less including a type

declaration character.
 Variable name cannot be the reserved namei, but a part of variable name

can be the reserved name. It is not cared which case of alphabets variable
name has.

 In case that the two variable names equal, if type declaration characters
differ, the compiler distinguishes the two variables. Type declaration
character is added to the end of variable name.

 If type declaration character is omitted, the compiler decides that the
variable is single precision real-number type as if “ ! “ is added.

 See “6.2.3 Local Variable, Global Variable and Network Global
Variable”.

i Reserved name is keyword of HrBasic language, such as name of statement (e.g. Mid, If), name
of function (e.g. Len, Abs), and operator (e.g. Or, Mod).

! Note

9 Commands

9-50

GoSub (Statement)

 Function
Calls a subroutine.

 Format
GoSub Label

 Argument
Parameter Explanation

Label A label of a subroutine to call.

 Example
GoSub *SUB1

 Explanation
♦ A subroutine is a block of program that starts at an entry label and

exits by Return statement.
♦ GoSub statement calls a subroutine to jump to the specified label.

It cannot calls a subroutine programmed in another job.
♦ Subroutine program can call another subroutine. Maximum

number of subroutine-call nests is 16. If the nests exceed the
maximum number, a job error occurs.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See also Return, “7.2 Subroutine as Program Module”.

! Note

9 Commands

9-51

GoTo (Statement)

 Function
Jumps to the specified label.

 Format
GoTo Label

 Argument
Parameter Explanation

Label A label to jump.

 Example
*MAIN.LOOP
 :
 :
GoTo *MAIN.LOOP

 Explanation
♦ GoTo statement jumps to the specified label unconditionally. It

cannot jump to a label in another job.
♦ In structured programming, GoTo statement is not used generally.

But some case of repetition structure has to use GoTo statement.
And in some case, a program is difficult to understand without
GoTo statement. See “7.1.4 Usage of GoTo Statement” about this.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See “7.1.4 Usage of GoTo Statement”.

! Note

9 Commands

9-52

Hex$ (Function)

 Function
Gets a string by hexadecimal expression converted from decimal value.

 Format
Hex$(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Value of a number

Return value A string of the specified value by hexadecimal
expression

 Example
a$=Hex$(30) ‘ “1E” is substituted for a$.

 Explanation
Integer (16-bits, 32-bits) or real type expression can be specified to
Numeric-expression.
There are two types of the returned string according to the specified
value type, 16-bits integer (%) or 32-bits integer (&). In case of real type,
the fractional part of the value is removed and the value is converted to
long integer type.

1) 16-bits integer type
Numeric-expression has the value from -32768 through 32767 and
the returned string has maximum four characters.
Relation between Numeric-expression and the returned string is
shown below.

Value of Numeric-expression Returned string
-32768 … -1 8000 … FFFF

0 … 32767 0 … 7FFF

2) 32 bits long integer or real type
Numeric-expression has the value from -2147483648 through
2147483647 and the returned string has maximum eight characters.
In case of real type, the fractional part of the value is removed.
Relation between Numeric-expression and the returned string is
shown below.

Value of Numeric-expression Returned string
-2147483648 … -32769 80000000 … FFFF7FFF

-32768 … -1 FFFF8000 … FFFFFFFF
0 … 32767 0 … 7FFF

32768 … 65535 8000 … FFFF
65536 … 2147483647 10000 … 7FFFFFFFF

 See also Str$, Val.

9 Commands

9-53

Hold On / Off (Statement)

 Function
Specifies whether the robot holds (servo-locks) the position after the
completion of positioning.

 Format
Hold On #File-number[[rno:Robot-number]] [, Axis][, Axis]…
Hold Off #File-number[[rno:Robot-number]] [, Axis][, Axis]…

 Arguments
Parameter Explanation

File-number
A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Axis

HNC-580 series or HAC-8XX controller does not support
this parameter.
Specify the following axis number to servo-lock or
servo-unlock.
X-axis:1, Y-axis:2, Z-axis:3, W-axis:4, R-axis:5, C-axis:6
If any axis is not specified, all implemented axes are
controlled.

 Example
Hold On #1[rno:2] ‘ Servo-lock all axes
Delay 3.0 ‘ Timer for completion
Hold Off #1[rno:2] ‘ Servo-unlock all axes
Delay 3.0 ‘ Timer for completion
‘ Job error occurs for HNC-580 series or HAC-8XX
‘ when the following runs.
Hold On #2, 1, 2, 4 ‘ Servo-lock X, Y, W axis
Delay 3.0 ‘ Timer for completion
Hold Off #2, 1 ‘ Servo-unlock X axis
Delay 3.0 ‘ Timer for completion

 Explanation
To servo-lock or servo-unlock takes about one second or two seconds in
the controller. About 3 seconds Delay is necessary as the previous
example.

9 Commands

9-54

If ... Then - Else - EndIf (Statement)

 Function
Branches into a procedure according to a condition.

 Format

1) If Condition Then Sentence#1[Else Sentence#2]

2) If Condition Then
 Block#1
[Else]
 [Block#2]
EndIf

 Arguments
Format 1)

Parameter Explanation

Condition A condition to branch. The condition has true value (-1) or
false value (0) as the result.

Sentence#1 A sentence to execute when Condition is true.
Multi-statement is not available.

Sentence#2 A sentence to execute when Condition is false.
Multi-statement is not available.

Format 2)
Parameter Explanation

Condition A condition to branch. The condition has true value (-1) or
false value (0) as the result.

Block#1 A sentence or a program block to execute when Condition
is true. Multi-statement is available.

Block#2 A sentence or a program block to execute when Condition
is false. Multi-statement is available.

 Example

1) If a$=”y” Then GoSub *YES.SUB Else GoSub *NO.SUB

2) If TIM(5) Then ‘ If TIM(5) timeout,
 a!=b! + c! ‘ Execute a!=b! + c!
Else ‘ If not so,
 GoTo *EXIT ‘ Jump to *EXIT.
EndIf

 Explanation
♦ If-Then-Else-EndIf statement is used for two-branch structure.
♦ For structured programming, Format 2) is recommended.
♦ Maximum number of If-Then-Else-EndIf nests is 16.

 See “7.1.2 Selection Structure”.

9 Commands

9-55

Imp (Operator)

 Function
Executes a logical implication of two numbers.

 Format
Numeric-expression#1 Imp Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = &H00FF%
b% = &H0F0F%
c% = a% Imp b% ‘ &HFF0F% is substituted for c%.

 Explanation

• The following calculation is performed.
 X Y X imp Y

1 1 1
1 0 0
0 1 1
0 0 1

• See “6.4.3 Logical Operator”.

9 Commands

9-56

Inching (Statement)

 Function
Moves a robot by inching. Inching means 0.5-second jog-motion with low
speed.
Note) Inching function returns immediately after a robot starts to move.

If the next Inching function is executed within 0.5 second, the
robot continues to move by inching.

 Format
(Linear motion)
Inching Linear #File-number[[rno:Robot-number]], Axes, Speed
(Rotary motion)
Inching Rotary #File-number[[rno:Robot-number]], Axes, Speed

 引数
Parameter Explanation

File-number
A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Axes

Specify axes and direction of inching motion by a
constant or a variable that contains the decimal value
with 6 digits. Multiple axes can be specified at once.
Each digit indicates X, Y, Z, W, R and C axis from left to
right. One digit represents the following actions.
0: Stop axis or unused axis.
1: Plus direction inching
2: Minus direction inching
Example#1)
 120001 --- X axis: plus, Y axis: minus, C axis: plus
Example#2)
 002200 --- Z axis: minus, W axis: minus

Speed

A constant or variable of number specifying inching
speed
0: Low speed
1: High speed

 Example

1) Linear
Inching Linear #1[rno:1], 120001, 1 'Linear, +X, -Y, +C, High speed

2) Rotary
axes& = 002200
Inching Rotary #1[rno:1], axes&, 0 'Rotary ,-Z, -W, Low speed

 Explanation
♦ Inching function inches the specified axis in the specified direction

with the specified speed for 0.5 second.

9 Commands

9-57

♦ If a variable is used for Axes, a long integer type (type declaration
character &) is necessary for the variable. If 16-bits integer type
(type declaration character %) is used, A job error, overflow, may
occur because 6-digits decimal value cannot be contained in the
variable.

♦ If the value except 0, 1, 2 is specified for each axis of Axes
parameter, an job error occurs.

♦ If the value except 0, 1 is specified for Speed parameter, an job
error occurs.

♦ For Axes parameter, the following example shows how to convert
the each axis setting into one long integer variable.
‘ Set each axis parameter
x.axis& = 1 '+direction of X-axis
y.axis& = 2 '-direction of Y-axis
z.axis& = 0 'Stop Z-axis
w.axis& = 0 'Stop W-axis
r.axis& = 2 '-direction of R-axis
c.axis& = 0 'Stop C-axis
‘ Covert into axes parameter
axes& = x.axis& * 100000 + y.axis& * 10000 + z.axis& * 1000

 + w.axis& * 100 + r.axis& * 10 + c.axis&
‘ Or uses AxesPara function.
axes& = AxesPara(x.axes&, y.axis&, z.axes&, w.axes&, r.axis&

, c.axis&)
‘ Inching
Inching Linear #1[rno:1], axes&, 0

♦ Specify zero value to Axes parameter to stop inching motion of all
axes.
Inching Linear #1[rno:1], 0, 1 'Stop all axes

♦ The following example stops the inching motion completely, after
the 0.5-second inching is executed only one time.
Inching Linear #1[rno:1], 111111, 1 '+direction of all axes
Delay 0.5
Inching Linear #1[rno:1], 0, 1 'Stop all axes

♦ Repeat the execution of Inching function to continue inching for
more than 0.5 second. The following example continues inching
during INB#1 ON.
Wait INB(1) = 1 'Wait for INB#1 ON
*LOOP
 If INB(1) = 0 Then
 Inching Linear #1[rno:1], 0, 1 'Stop all axes

Return 'Exit
 EndIf

 Inching Linear #1[rno:1], 111111, 1 '+direction of all axes
 GoTo *LOOP

 See also AxesPara.

9 Commands

9-58

Include (Statement)

 Function
Reads the specified header file (suffix .hed) into a source program file
(suffix .bas).

 Format
Include ”Header-filename”

 Argument
Parameter Explanation

Header-
filename

A header file name to read.

 Example
Include “ml.hed”
Include “io.hed”

 Explanation
♦ The specified header file has to be located at the directory defined

in “Setup” -> “Directories” -> “Header files” in HBDE.
♦ Reading a header file is executed during compilation.
♦ When reading, Define statement described in the header file is

analyzed and the definition name is registered on compilation.
♦ Include statement has to be described before the defined name is

used in a source program. Generally, Include statement is described
at the starting part of a job program before an executable sentence
is described.

It is recommended that Include statement is programmed after Job Name
statement.
Example)
 Job Name “robot”
 Include “io.hed”

 See also Define, “Chapter 3 Program Development Guideline”.

!
Guideline for
Programming

9 Commands

9-59

InitGoSub (Statement)

 Function
Initialize the subroutine-call stack.

 Format
InitGoSub

 Argument
Nothing

 Example
On Error GoTo *ERR.HANDLER
*MAIN
 :
*ERR.HANDLER
 :
 InitGoSub
 Resume *MAIN

 Explanation
♦ The subroutine-call stack is the management data of the return

address of subroutines and the subroutine-call state, which is
added by GoSub statement and removed by Return statement.

♦ InitGoSub statement makes the initial state of the subroutine-call,
which indicates a subroutine has not been called, the same after
STP system starts or a program is downloaded.

♦ A program may jump to an error handler from the middle of
subroutine program without Return execution in case that the error
handle has been defined by On Error GoTo statement. After that,
the correspondence of the subroutine-call stack may not be satisfied
if a program exits the error handler and then jumps to resume a
main program by Resume statement or GoTo statement. In such
case, InitGoSub statement is useful for resuming a main program
to initialize the subroutine-call stack as the above example.

♦ As the above-mentioned explanation, after InitGoSub execution, a
program has to jumps into the head part of a job program where
any subroutine has not been called.

9 Commands

9-60

InitPos (Statement)

 Function
Initializes position memory in STP.

 Format
InitPos Start-index to End-index

 Arguments
Parameter Explanation

Start-index Start index number of STP position memory to initialize.
Valid range is from 0 through 7999.

End-index End index number of STP position memory to initialize.
Valid range is from 0 through 7999.

 Example
DimPos 1000
InitPos 0 to 999 ‘ Initialize P(0) through P(999)

 Explanation
♦ InitPos statement initializes STP position memory with the

specified range.
♦ Members of a position record are initialized by the following values.

Member Expression Value
X-axis data PXn 0.0
Y-axis data PYn 0.0
Z-axis data PZn 0.0
W-axis data PWn 0.0
R-axis data PRn 0.0
C-axis data PCn 0.0
Arm PARMn 0
M data PDMn 255
F code PDFn 0
S code PDSn 0
Coordinate type － 0

♦ If position memory to initialize is out of the range declared by
DimPos statement, a compiling error or a job error occurs.

 See also DimPos, “4.2.5 P and Its Structure”.

9 Commands

9-61

Input # (Statement)

 Function
Reads data from a file and put the value to the specified variables.

 Format
Input #File-number, Variable [, Variable…]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Variable A variable to set the value of data read from a file.

 Example
Input #1, a!, b$

 Explanation
♦ Input# statement reads data form a file and the value of data is set

into the specified variable. If the data type does not match the
variable type, a job error occurs.

♦ In case of reading multiple data, a delimiter varies according to
reading data type.

Delimiter Data type Name ASCII code
Space (SP) 32 (&H20)
Comma (,) 44 (&H2C) Number
Carriage return (CR) 13 (&H0D)
Comma (,) 44 (&H2C) Character

string Carriage return (CR) 13 (&H0D)
♦ A Linefeed (LF, ASCII code 10) after a carriage return is

disregarded.

 See also Input$.

9 Commands

9-62

Input$ (Function)

 Function
Reads data from a file with the specified length.

 Format
Input$(Length, #File-number)

 Arguments and Return value
Parameter Explanation

Length Length to read
Valid range is from 1 through 255.

Arguments File-
number

A file number corresponded to the
communication port must be specified. Valid
range is from 0 through 47.
In case of variable, "#" can be omitted but in case
of a numeral constant, it cannot be omitted.

Return value A character string read from a file

 Example
mozi$=””

*LOOP
a$=Input$(1, #1) ‘ Read 1 byte from a file
If Eof(1) Then ‘ End of file

 GoTo *EXIT
Else

 mozi$=mozi$+a$ ‘ Add reading data
 GoTo *LOOP

EndIf
*EXIT

 Explanation
♦ Input$ function does not return until the data with the specified

length is put into a file. If there is already the data with the
specified length in a file, it returns immediately after reading the
data.

♦ Input$ function reads any byte-code including space, comma,
carriage return, linefeed and control codesi.

 See also Input #, Line Input #.

i Control code: Byte-code to control a display or peripheral equipment. This code is not printable
and not able to display.

9 Commands

9-63

InStr (Function)

 Function
Searches the specified string and returns the found position.

 Format
InStr([Start,] String#1, String#2)

 Arguments and Return value
Parameter Explanation

Start
Start position of String#1 to search by integer
value. Valid range is from 1 through the length
of String#1. If omitted, the parameter is
regarded as 1.

String#1 A string to search. (The function searches this
string for String#2.)

Arguments

String#2 A string to search for. (The function searches
String#1 for this string.)

Return value
If String#2 is found in String#1, the found
position at the top of String#2 in String#1 is
returned. If not found, zero value is returned.

 Example
a$=”Hirata Corporation”
b%=InStr(a$, “ra”) ‘ 3 is substituted for b%.
c%=InStr(7, a$, “ra”) ‘ 13 is substituted for c%.

 Explanation
♦ Searching is executed by the comparison of each byte.
♦ If String#2 is a null string, InStr function returns the value of

Start.

9 Commands

9-64

Int (Function)

 Function
Removes the fractional part of number and returns the resulting integer
value.

 Format
Int(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Any value by numeric expression.

Return value Integer value.

 Example
a%=Int(4.12) ‘ 4 is substituted for a%
b%=Int(-4.12) ‘ -5 is substituted for b%

 Explanation
If the specified value is positive, Int returns the integer value that is the
same result of Fix function.
If the specified value is negative, Int function returns the integer value
that is less than and nearest to the specified value.
On the other hand, Fix function returns the integer value that is greater
than and nearest to the specified value.

0 1
Less

-1-2 Greater

-1.5 Fix(-1.5)Int(-1.5)

 See also Fix.

9 Commands

9-65

Job Name (Statement)

 Function
Defines the entry of a job and declares job name.

 Format
Job Name ”Job-name”

 Argument
Parameter Explanation

Job-name Job name of a program.

 Example
Job Name “Init”

 Explanation
The range of one job program is coded program steps from the “Job
Name” statement to the next one or to the end step of a source file.
Therefore, both only one job and two or over jobs can be coded in a source
file.

Job Name ～

Job Name ～

Job Name ～

Range of a job

AAA.bas BBB.bas

Job name has the following rules.
♦ The length of a job name has to be 16 bytes or less.
♦ The first character of a job name has to be alphabetic or numeral.
♦ Job name may contain alphabet, numeral, period (.), hyphen (-),

and underline (_).
♦ Job name has to be enclosed by double quotation marks.
♦ Job name cannot be the reserved namei, but a part of job name can

be the reserved name. It is not cared which case of alphabets job
name has.

The job specified in Job Start, Job On, Job Off statement has to be
defined by Job Name statement, and it is required that the job has been
linked into the downloaded program.

 See also Job Off, Job On, Job Start.

i Reserved name is keyword of HrBasic language, such as name of statement (e.g. Mid, If), name
of function (e.g. Len, Abs), and operator (e.g. Or, Mod).

9 Commands

9-66

Job Off (Statement)

 Function
Stops the execution of a job.

 Format
Job “Job-name” Off

 Argument
Parameter Explanation

Job-name Job name to stop.

 Example
Job “Init” Off

 Explanation
Job Off statement stops the execution of the specified job.
Job Off statement can stop not only the other job but also the current job.
However, the stopped job has to be started or restarted by the other job
using Job Start or Job On statement.
The job environment of execution, such as local variables or the
executing step, is kept after the job stopped. Job On statement restarts
the stopped job at the next step of stopped program.
When a program to stop is executing Move statement, Job Off statement
stops a robot motion immediately and then stops a program execution.
Job On statement restarts the job at the next step of Move. In the
following example, if Job Off stops the job before the completion to move
to PM(100), a robot stops immediately before a robot reaches PM(100).
And then, if Job On statement restarts the job, a robot restarts to move
to PM(200).
Example)
 Move #1[rno:1], PM(100) If Job Off, robot stops immediately.

Move #1[rno:1], PM(200) If Job On, robot moves to PM(200).

 See also Job Name, Job On, Job Start.

9 Commands

9-67

Job On (Statement)

 Function
Restarts a job execution.

 Format
Job “Job-name” On

 Argument
Parameter Explanation

Job-name Job name to restart.

 Example
Job “Robot1” On

 Explanation
Job On statement restarts a job stopped by Job Off statement.
All jobs starts automatically after STP system starts or a program is
downloaded. The started job is stopped by the following operations.

3) Job Off statement by its own job

4) Job Off statement by other job
The stopped job can be restarted by other job. Job On statement restarts
the stopped job at the next step of a stopped program.
In the following example, Buzzer job restarts at the step “*LOOP” after
Main job executes Job On statement.

Job Name “Buzzer”
Include “test.hed”

*POWER.ON
OUTB(O.BUZZER)=0 'Buzzer OFF

Job "Buzzer" Off 'Job Off by myself

‘After Job On by Main job,
‘repeat the following procedure.
*LOOP
 OUTB(O.BUZZER)=1
 Delay 0.2
 OUTB(O.BUZZER)=0
 Delay 0.2
 GoTo *LOOP

Job Name “Main”
Include “test.hed”

*MAIN.LOOP
 Wait INB(I.BUZZER)=1
 Job "Buzzer" On 'Restart Buzzer job
*RED.BLINK.LOOP ‘Blink lamp
 Delay 1 : OUTB(O.RED)=1
 Delay 1 : OUTB(O.RED)=0
 If INB(I.BUZZER)=1 Then

 GoTo *RED.BLINK.LOOP
 EndIf
 Job "Buzzer" Off 'Stop Buzzer job
 ’Initilize and start Buzzer job

 Job "Buzzer" Start
 GoTo *MAIN.LOOP

If Job On is executed to the running job, Job On statement returns
immediately without operation.

 See also Job Name, Job On, Job Start.

9 Commands

9-68

Job Start (Statement)

 Function
Initializes a job and starts it from the first step.

 書式
Job “Job-name” Start

 Argument
Parameter Explanation

Job-name Job name to start.

 Example
Job “Robot1” Start

 Explanation
Job Start statement initializes a job and starts it from the first step of a
program.
All jobs starts automatically after STP system starts or a program is
downloaded. The started job is stopped by the following operations.

1) Job Off statement by its own job

2) Job Off statement by other job
The stopped job can be started by other job. Job Start statement starts
the stopped job from the first step after initialization of the job.
In the following example, Buzzer job starts from the step “*POWER.ON”
after Main job executes Job Start statement.

Job Name “Buzzer”
Include “test.hed”

*POWER.ON
OUTB(O.BUZZER)=0 'Buzzer OFF

Job "Buzzer" Off 'Job Off by myself

‘After Job On by Main job,
‘repeat the following procedure.
*LOOP
 OUTB(O.BUZZER)=1
 Delay 0.2
 OUTB(O.BUZZER)=0
 Delay 0.2
 GoTo *LOOP

Job Name “Main”
Include “test.hed”

*MAIN.LOOP
 Wait INB(I.BUZZER)=1
 Job "Buzzer" On 'Restart Buzzer job
*RED.BLINK.LOOP ‘Blink lamp
 Delay 1 : OUTB(O.RED)=1
 Delay 1 : OUTB(O.RED)=0
 If INB(I.BUZZER)=1 Then

 GoTo *RED.BLINK.LOOP
 EndIf
 Job "Buzzer" Off 'Stop Buzzer job
 ’Initilize and start Buzzer job

 Job "Buzzer" Start
 GoTo *MAIN.LOOP

If Job Satrt is executed to the running job, a job error occurs.
After the execution of Job Start statement, the target job is transferred
into the following state.
♦ Nesting information of For-Next, subroutine and so on is cleared.
♦ Files that are opened by the job are closed.
♦ Error information of the job is cleared.

 See also Job Name, Job On, Job Off.

9 Commands

9-69

Left$ (Function)

 Function
Gets the string containing a specified number of characters from the left
side of a string.

 Format
Left$(String, Length)

 Arguments and Return value
Parameter Explanation

String String expression from which the leftmost
characters are returned.

Arguments
Length

Numeric expression indicating number of
characters to return. Valid range is from 0
through 255.

Return value Leftmost string.

 Example
a$=”Hirata Corporation”
b$=Left$(a$, 6) ‘ “Hirata” is substituted for b$.

 Explanation
If Length exceeds the length of String, the function returns the same as
the specified String.
If Length is zero, the function returns a null string.

 See also Right$, Mid$.

9 Commands

9-70

Len (Function)

 Function
Gets length of a string.

 Format
Len(String)

 Argument and Return value
Parameter Explanation

Argument String A string to get the length.
Return value Byte size of the string length.

 Example
a$=”Hirata Corporation”
length%=Len(a$) ‘ 18 is substituted for length%.

 Explanation
Any character codes such as control codesi, space and so on are counted.

i Control code: Byte-code to control a display or peripheral equipment. This code is not printable
and not able to display.

9 Commands

9-71

Line Input # (Statement)

 Function
Reads one line of characters from a file and set data to a string variable.

 Format
Line Input #File-number, Variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Variable A string variable to set the read data.

 Example
Line Input #1, a$

 Explanation
Regardless of string delimiters such as comma, double quotations and so
on, Line Input statement reads one line of characters from a file. A line
has to be terminated by carriage return (CR) + linefeed (LF).

Name ASCII code
Carriage return (CR) 13 (&HD)
Linefeed (LF) 10(&HA)

9 Commands

9-72

Log (Function)

 Function
Gets the natural logarithm of a number.

 Format
Log(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Any valid numeric expression greater than
zero.

Return value The natural logarithm of the specified value.

 Example
n! = 35 / 9
a# = Log(n!)

 Explanation
The natural logarithm is the logarithm to the base e. The constant e is
approximately 2.718282.
You can calculate base-n logarithms for any number x by dividing the
natural logarithm of x by the natural logarithm of n as follows.

Log n (x) = Log(x) / Log(n)

 See also Exp.

9 Commands

9-73

Macro (Statement)

 Function
Defines a format of a macro-call in a macro file (suffix .bas).

 Format
Macro[Argument#1 [, Argument#2 [, Argument#3....]]]

 Arguments
Parameter Explanation

Argument#n A variable used as a parameter that is specified by a
macro-call. The number of arguments is allowed up to 10.

 Example
< Proc1.bas > --- Macro file (macro name ”Proc1”)
Macro para1&, para2&, para3&
 If para1& > 100 Then
 ML(ML.DATA) = para2& + para3&
 Else
 ML(ML.DATA) = para2& - para3&
 EndIf
< Main.bas >
 data1&=10: data2&=1000: data3&=90
 Proc1(data1&, data2&, data3&) ‘ Proc1 macro-call
 data1&=101: data2&=100: data3&=90
 Proc1(data1&, data2&, data3&) ‘ Proc1 macro-call

 解説
♦ A macro file has to be located at the directory defined in “Setup” ->

“Directories” -> “Macro files” in HBDE.
♦ Only one Macro statement has to be described at the top of a macro

file. Macro name, which is used at the macro-call in the main
program, is the name except filename suffix.

♦ See “7.5 Macro File” about details of macro usage.

9 Commands

9-74

Mid$ (Statement)

 Function
Replaces a part of a string.

 Format
Mid$(String, Start [, Length]) = String-expression

 Arguments
Parameter Explanation

String A string variable to modify. If a string constant, a
compiling error occurs.

Start Character position in String where the replacement of
text begins.

Length Number of characters to replace. If omitted, all of string
is used.

String-
expression

String expression that replaces part of String.

 Example
a$ = ”HrBasic Version 1.00”
Mid$(a$, 9, 7) = ”##Ver##” ‘ ”HrBasic ##Ver## 1.00” substituted for a$

 Explanation
♦ The result of the example program is shown below.

Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
String H r B a s i c V e r s i o n 1 . 0 0

 ↓
String H r B a s i c # # V e r # # 1 . 0 0

 Start 9, Length 7
♦ If Start or Length is zero, or Start are greater than the length of

String, a job error occurs.
♦ If Length is omitted or greater than the length of String-expression,

replaced length is regarded as the length of String-expression.
♦ For example, the result of replacement from “harl-3” to “HrBasic” is

shown below in the two cases of varying Start and Length.
 Varying Start Varying Length
 For i%=1 to 6
 a$=”harl-3”

Mid$(a$,i%)=”HrBasic”
 Next i%

 For i%=1 to 6
 a$=”harl-3”
 Md$(a$,1,i%)
 Next i%

a$ byte
 i% 1 2 3 4 5 6 a$ byte

 i% 1 2 3 4 5 6

0 Job error 0 Job error
1 H r B a s i 1 H a r l - 3
2 h H r B a s 2 H r r l - 3
3 h a H r B a 3 H r B l - 3
4 h a r H r B 4 H r B a - 3
5 h a r l H r 5 H r B a s 3
6 h a r l - H 6 H r B a s i
7 Job error 7 H r B a s i

9 Commands

9-75

Mid$ (Function)

 Function
Gets the string containing a specified number of characters from a string.

 Format
Mid$(String, Start [, Length])

 Arguments and Return value
Parameter Explanation

String String expression from which characters are
returned.

Start
Character position in string at which the part to
be taken begins. Valid range is from 0 through
255. Arguments

Length
Numeric expression indicating number of
characters to return. Valid range is from 0
through 255.

Return value Extracted string.

 Example
a$ = ”HrBasic Version 1.00”
b$ = Mid$(a$, 9, 7) ‘ ”Version” is substituted for b$.

 Explanation
♦ If Length is omitted, or the size from Start position through the end

of String, Mid$ statement returns the string of characters from
Start position through the end.

Example)
a$=”1234567890”
b$=Mid$(a$, 3) ‘ ”34567890” substituted for b$
c$=Mid$(a$, 7, 5) ‘ ”7890” substituted for c$

♦ If Start exceeds the length of String, or Length is zero,
Mid$ statement returns a null string.

Example)
a$=”Hirata”
b$=Mid$(a$, 8, 5) ‘ Null string substituted for b$
c$=Mid$(a$, 7, 0) ‘ Null string substituted for c$

 See also Right$, Left$.

9 Commands

9-76

Mod (Operator)

 Function
Divides two numbers and returns only the remainder.

 Format
Numeric-expression#1 Mod Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = 19
b% = 6
c% = a% Mod b% ‘ 1 substituted for c%.

 Explanation
♦ Mod operator divides Numeric-expression#1 by Numeric-expression

#2 and returns only the remainder.

9 Commands

9-77

Move (Statement)

 Function
Moves a robot to the specified position.

 Format
a) Standard format

Move #File-number[[rno:Robot-number]] [, Motion [Sub-motion]]
, Position [, NoWait]

b) Pass PTP motion for discrete positions
Move # File-number[[rno:Robot-number]]], PASS

, Position#1 [, Position#2, Position#3…] [, NoWait]
 Note) Only supported by HNC-580 series and HAC-8XX.

 Arguments
Parameter Explanation

File-number A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Motion Motion pattern of a robot.
PTP: A robot moves by PTP motion. If Sub-motion is

omitted, a robot moves by the pattern specified by
S code at each position.

Omitted: A robot moves by the pattern specified by M
data and S code at each position.

Sub-motion In case of PTP motion, the following sub-motions can be
specified.
SlowDown: Insert motion
SlowUp: Slow-up motion
Slow: Insert and slow-up motion
Omitted: A robot moves by the pattern specified by S
code at each position.

Position Expression to designate the position where the robot
stops or passes. The expressions are categorized into the
following six types. See “Explanation” about details.
(1) Position data PMn stored in robot controller
(2) Position data PMn stored in robot controller +

Relative distance of axis
(3) Position memory in STP
(4) Position memory in STP + Relative distance of axis
(5) Direct components of position
(6) Current robot position + Relative distance of axis

NoWait NoWait: Move statement returns without waiting for the
positioning completion of a robot.

Omitted: Move statement returns after the positioning
completion of a robot.

 Example
(1) Position data PMn stored in robot controller

9 Commands

9-78

Move #1[rno:1], PM(120)
(2) Position data PMn stored in robot controller + Relative distance of

axis
Move #1[rno:1], PM(120)＋(, ,10.3, , ,)

(3) Position memory in STP
Move #1[rno:1], P0

(4) Position memory in STP + Relative distance of axis
Move #1[rno:1], P0-(20, 10, 100)

(5) Direct components of position
Move #1[rno:1], (100, , , 100, 0, 0, RIGHTY, 0, 1, 99, 1)

(6) Current robot position + Relative distance of axis
Move #1[rno:1], HERE+(, , -100)

 Explanation

(1) Position data PMn stored in robot controller
Format)

PMn
Explanation)
• Specify the stored position data that has been already taught

in the robot controller.
• "n" is the number that indicates the address of position data to

move.
• For HNC-3XX or HNC-544 controller, "n" is available as 0 to

999. For HNC-580 series or HAC-8XX controller, "n" is
available as 0 to 3999.

• "n" is usually specified as the number. But, "n" can be specified
as array expression as Example 2) and 3) using a variable.

Example 1)
PM100 --- stored position data of address 100

Example 2)
PM(100) --- stored position data of address 100

Example 3)
PM(addr%) --- stored position data of address set in addr%

(2) Position data PMn stored in robot controller + Relative distance of
axis
Format)

PMn + (X, Y, Z, W, R, C)
Explanation)
• Specify the stored position data that has been already taught

in the robot controller and the relative distance of each axis
from the stored position.

• Only "+" is available for a calculation operator. If “-“ is
specified, a compiling error occurs.

• How to specify PMn is the same as (1).
• Number or variable is available for relative distance of axis.
• Distance unit is millimeter or degree.
• Omitted axis means that the zero value is specified.

Example 1)
PM100 + (, ,10.3, , ,)

9 Commands

9-79

--- position where 10.3 mm is added to Z axis to PM100.
Example 2)

PM(50) + (-3.6, , 10.3, , ,)
--- position where –3.6 mm, 10.3 mm are added
--- to X and Y axis to PM(50).

Example 3)
PM(10) + (-3.6, y.dis!, 10.3)
--- position where –3.6 mm, y.dis! mm, 10.3 mm are
--- added to X, Y and Z axis to PM(10).

(3) Position memory in STP
Format)

Pn
Explanation)
• Specify the position memory in STP.
• "n" is the number that indicates the index of position memory

and available value is from 0 to 7999.
• "n" is usually specified as the number. But, "n" can be specified

as array expression as Example 2) and 3) using a variable.
Example 1)

P100 --- position memory with index 100
Example 2)

P(100) --- position memory with index 100
Example 3)

P(addr%) --- position memory with index set in addr%
• Before using Pn memory, the number of Pn memories must be

declared by DimPos statement. (See DimPos.)
• Pn memory is cleared by zero when STP starts. If the cleared

Pn memory is specified to MOVE statement, a job error occurs.
Before the reference of Pn memory when Move execution, the
Pn memory must be set with the accurate data of the target
position and motion. The accurate data of the target position
and motion means that the data must contains the all axes
position, arm component, dimension code and M,F,S code.
There is the following ways that set the accurate data to a Pn
memory.
a) Copy the position data stored in robot controller to Pn

memory
Example)

P(10) = Ref(#1, PM100)
PX(10) = 12.3

This sample copies the PM100 in the robot controller to
P10 and it modifies only X axis data to 12.3 mm.

b) PosRec function can set the position data to Pn memory in
one step.
Example)

P(10) = PosRec (10, 20, 30, 40, 0, 0, LEFTY, 0, 1, 99, 0)
X axis --- 10.0 mm
Y axis --- 20.0 mm
Z axis --- 30.0 mm
W axis --- 40.0 degree
ARM component --- lefty

9 Commands

9-80

Dimension code --- zero
M code --- 1
F code --- 99
S code --- 0

Note)
Zero must be specified to dimension code.
Zero must be specified to unused axis.

c) Copy the current position of the robot and then set M,F,S
code. Axis data may be modified if necessary.
Example)

‘ Copy the current position but M,F,S code
‘ is cleared by zero.
P(10) = REF(#1, HERE)
‘ M,F,S code must be set.
PDM(10) = 1: PDF(10) = 99: PDS(10) = 0
‘ Decrease 20.0 mm in Z axis.
PZ(10) = PZ(10) - 20.0

Note)
Zero must be specified to dimension code.
Ref(#x, HERE) can get only the current axis position,
arm component and dimension code and M,F,S data
cannot be got and the its value is set to zero because the
robot controller cannot decide M,F,S code for the current
position.
So, the above sample program sets valid M,F,S code to
Pn memory after REF(#1, HERE) is executed.

(4) Position memory in STP + Relative distance of axis

Format)
Pn + (X, Y, Z, W, R, C)
Pn - (X, Y, Z, W, R, C)

Explanation)
• Specify the position memory in STP and the relative distance

of each axis from the position memory.
• How to specify and notice of Pn is the same as 3).
• Number or variable is available for relative distance of axis.
• Distance unit is millimeter or degree.
• Omitted axis means that the zero value is specified.

Example 1)
P100 + (, ,10.3, , ,)
--- position where 10.3 mm is added to Z axis to P100.

Example 2)
P(50) + (-3.6, , 10.3, , ,)
--- position where –3.6 mm, 10.3 mm are added
--- to X and Y axis to P(50).

Example 3)
P(10) + (-3.6, y.dis!, 10.3)
--- position where –3.6 mm, y.dis! mm, 10.3 mm are
--- added to X, Y and Z axis to P(10).

• "-" is available for calculation operator.
Example 4)

9 Commands

9-81

P(90) - (1.0, 2.0, 3.0, 4.0)

(5) Direct components of position
Format)

(X, Y, Z, W, R, C, Arm, Dimension, M-data, F-code, S-code)
Explanation)
• Specify the axis position, arm component, dimension code and

M,F,S code directly.
• X, Y, Z, W, R, C can be omitted
• Distance unit of axes is millimeter or degree.
• In case of unused or not equipped axis, set zero or omit for the

axis.
• If used or equipped axis is omitted, it means that the current

position of the axis is specified.
• In case that the target is HNC-3XX or HNC-544 controller,

ARM, Dimension, M-data, F-code, S-code can be omitted.
• In case that the target is HNC-580 series or HAC-8XX

controller, ARM, Dimension, M-data, F-code, S-code cannot be
omitted. If omitted, a job error occurs when Move statement is
executed.

• Standard values are as follows.
Dimension --- 0
M-data --- 1
F-code --- 99
S-code --- 0
Specify zero to <Dimension code> in any case.

Example 1)
(-12.3, 2.3, 52.1, -184.3, 0, 0, LEFTY, 0, 1, 99, 0)
--- X:-12.3mm Y:2.3mm Z:52.1mm W:-184,3deg.
--- R:unused C:unused

Example 2)
(, , z.dis!, , , , LEFTY, 0, 1, 99, 0)
--- position where Z axis is added to the value z.dis!
--- from the current position

(6) Current robot position + Relative distance of axis
Format)

HERE + (X, Y, Z, W, R, C)
Explanation)
• Specify the current robot position and the relative distance of

each axis from it.
• Only "+" is available for a calculation operator.
• The keyword "HERE" represents the current position of the

robot.
• If only HERE is specified without relative distance, a error

occurs when compiling.
• Number or variable is available for relative distance of axis.
• Distance unit is millimeter or degree.
• Omitted axis means that the zero value

Example 1)
HERE + (, ,10.3, , ,)

9 Commands

9-82

--- position where 10.3 mm is added to Z axis
--- to the current position.

Example 2)
HERE + (-3.6, , 10.3, , ,)
--- position where –3.6 mm, 10.3 mm are added
--- to X and Y axis to the current position.

Example 3)
HERE + (-3.6, y.dis!, 10.3)
--- position where –3.6 mm, y.dis! mm, 10.3 mm are
--- added to X, Y and Z axis to the current position.

♦ NoWait

If NoWait is specified, the program goes to the next step of Move
statement not waiting for the completion of moving.
Then, while robot is moving, the program can check and control I/O
for example. But, the program has to check the completion of
moving.
The following is the sample program.

Example)

' Move to address 100 position stored in robot
Move #1[rno:2], PTP, PM(100), NoWait

*INB.CHECK
 If INB(10) = 1 Then ' Watch remote input bit #10

Disable #1[rno:2] ' Stop robot
GoTo *ROB.STOP ' Stopping procedure

EndIf
'If Robot is not stopped, check remote input.
If ((Ref(#1[rno:2], STATUS9) And &H2) <> &H2 Then

GoTo *INB.CHECK
 EndIf

Similarly, within Seq-SeqEnd block, the next step of Move statement
is executed not waiting for the completion of moving without NoWait
specified.
The difference of each case is shown below.

< Move execution in Seq-SeqEnd block >
The robot halts to move without moving the Z axis to pull down.
If Finish statement is executed, the Z axis is pulled down
immediately.
Then the robot completes to move to the target position.

< Move execution with NoWait >
The robot does not halt and moves to the target position directly.
If Finish statement is executed, it has no effect of motion.

♦ Pass PTP motion

Pass PTP motion is the function of a robot controller. In pass PTP
motion, a robot moves to pass sequentially addressed multiple
positions which have been taught or programmed in a robot without
slowdown, and finally stops at the end position. The positions have

9 Commands

9-83

to contain M=30-39 data. (Refer to robot operation manual about
details.)

Since “a) Stardard format” can operate only one position, after
sequentially addressed multiple PMs with M=30-39 is set by
teaching or program, the starting PM(N) has to be specified to Move
statement.

In case of pass PTP motion using discrete positions, Move statement
has to be described by “b) Pass PTP motion for discrete positions”.

In this case, available position data expression is “(1) Position data
PMn stored in robot controller” or “(3) Position memory in STP”.
Maximum number of specified positions is 16.
It is not necessary that M data of each position is 30-39.
If the specified PMn is the top or middle of sequentially addressed
multiple positions in a robot, only one specified PMn is used for the
position.
This function is supported by only HNC-580 series and HAC-8XX.
Example)
 Move #1[rno:1], PASS, PM(10), P(i%), P(i%+10), NoWait

Start position A
 PM(a)

P(a)

Position B
PM(b)
P(b)

Position C
PM(c)
P(c)

End position X
PM(x)
P(x)

Without slowdown

Start address N
PM(N)

Address N+1
PM(N+1)

Address N+2
PM(N+2)

End address N+m
PM(N+m)

Without slowdownWithout slowdown

Without slowdown

9 Commands

9-84

NetClose (Function)

 Function
Closes a network communication.

 Format
NetClose(Network-ID)

 Argument and Return value
Parameter Explanation

Argument Network-ID Variable specifying a network identifier
returned by NetOpen function.

Return value Nothing

 Example
station%=2 ‘Station#2
nid%=NetOpen(station%) ‘Open network for Station#2
 :
NetClose(nid%) ‘Close network

 Explanation
♦ NetClose function closes the network communication with the

network identifier assigned by NetOpen function.
♦ Compiling error

• NetClose does not have a returned value. If NetClose is
substituted for a variable, the error “Type mismatch” occurs.

• If an expression such as a numerical constant instead of a
variable is specified to Network-ID, the error “Bad argument
type of function” occurs.

♦ Job error
• If the specified network identifier is invalid, the error

“Incorrect usage of command or function” occurs.

 See also NetOpen.

9 Commands

9-85

NetOpen (Function)

 Function
Opens a network communication.

 Format
NetOpen(Station-Number)

 Argument and Return value
Parameter Explanation

Argument Station-
Number

A numeric expression specifying a station
number assigned in the network definition. Valid
station number is from 0 through 127.

Return value Network identifier for the communication that is
opened normally.

 Example

 Explanation

♦ When you use NetOpen in HrBasic program running in STP, it is
necessary that you have to create the network definition and
download it to STP. Refer to operation manual of HBDE about
details.

♦ NetOpen function opens the network communication for the station
with the number specified to Station-Number.

♦ NetOpen returns the network identifier. NetRaed, NetWrite needs
this network identifier to read from or write to the network.
NetClose also needs this network identifier to close the network
communication.

♦ When communicating with the network, NetOpen has been
executed only one time for all jobs. If NetOpen is executed twice
without closing, an execution error occurs.

Dim a%(10)
 :
staion%=2
nid%=NetOpen(station%)
 :
wlen%=NetWrite(nid%,a%(0),10) ‘send a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #1

Dim a%(10)
 :
staion%=1
nid%=NetOpen(station%)
 :
rsize%=NetRead(nid%,a%(0),0) ‘Receive a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #2

9 Commands

9-86

♦ The maximum number of opened stations at the same time is
restricted to 16.

♦ Compiling error
• If the specified station number is the numerical constant with

the value out of 0 through 127, the error “Illegal value of
argument” occurs.

♦ Job error
• If the specified station number has the value out of 0 through

127, the error “Incorrect usage of command or function” occurs.
• If the specified station number is the own station number, the

error “Own station number specified” occurs.
• If the network definition of the specified station is not found,

the error “Network CR(Communication Reference) undefined”
occurs.

• If NetOpen has been already executed for the specified station,
the error “Network already opened” occurs.

• If more than 16 stations are opened simultaneously, the error
“Network open overflow” occurs.

 See also NetRead, NetWrite, NetOpen.

9 Commands

9-87

NetRead (Function)

 Function
Reads data from the network communication opened by NetOpen.

 Format
NetRead(Network-ID, Data-buffer, Option)

 Arguments and Return value
Parameter Explanation

Network-ID Variable specifying a network identifier
returned by NetOpen function.

Data-buffer Variable for reading data buffer. String
variable is available.

Arguments

Option

Optional flags.
&H0000 Waiting for receiving data

without execution of next step.
&H0001 If received data not found, the

next step is executed
immediately

Return value Data size actually received.

 Example

 Explanation

♦ When you use NetRead in HrBasic program running in STP, it is
necessary that you have to create the network definition and
download it to STP. Refer to operation manual of HBDE about
details.

♦ Maximum size of received data is 50 bytes.
♦ If the element of array like a%(0) is specified to Data-buffer, the

received data is set to the sequential area in which the first element

Dim a%(10)
 :
staion%=2
nid%=NetOpen(station%)
 :
wlen%=NetWrite(nid%,a%(0),10) ‘send a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #1

Dim a%(10)
 :
staion%=1
nid%=NetOpen(station%)
 :
rsize%=NetRead(nid%,a%(0),0) ‘Receive a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #2

9 Commands

9-88

is the specified element of array. You cannot specify the name of
array.

Example)
Dim x%(10)
size%=NetRead(nid%,x%(1),0) ‘Set to x%(1),x%(2),…
size%=NetRead(nid%,x%,0) ‘Compiling error

♦ If the size of received data is bigger than the size of setting variable,
area of other variable may be destroyed.

♦ Zero of return value means that data is not received. In case that
the value with the bit #0 ON is specified to Option, the size of
received data indicates that data has been received or not.

Example)
*LOOP

‘ Next step even if data not received
size% = Netread(nid%,data%,1)
‘ Read again when not received
If size% = 0 Then GoTo *LOOP

♦ Compiling error
• If an expression such as a numerical constant instead of a

variable is specified to Network-ID, the error “Bad argument
type of function” occurs.

• If an expression such as a numerical constant instead of a
variable is specified to Data-buffer, the error “Illegal function
call” occurs.

♦ Job error
• If the specified network identifier is invalid, the error

“Incorrect usage of command or function” occurs.
• If the specified network identifier is not opened, the error

“Network not opened” occurs.
• If the network definition of the specified network identifier is

not found, the error “Network CR(Communication Reference)
undefined” occurs.

 See also NetOpen, NetWrite, NetClose.

9 Commands

9-89

NetWrite (Function)

 Function
Writes data to the network communication opened by NetOpen.

 Format
NetWrite(Network-ID, Data-buffer, Data-size)

 Arguments and Return value
Parameter Explanation

Network-ID Variable specifying a network identifier
returned by NetOpen function.

Data-buffer Variable for writing data buffer. String
variable is available.

Arguments

Data-size Byte size to write.

Return value Data size actually sent. Normally, this size is
the same as Data-size.

 Example

 Explanation

♦ When you use NetWrite in HrBasic program running in STP, it is
necessary that you have to create the network definition and
download it to STP. Refer to operation manual of HBDE about
details.

♦ Maximum size of sending data is 50 bytes.
♦ If the element of array like a%(0) is specified to Data-buffer, the

data of the sequential area in which the first element is the
specified element of array is sent. You cannot specify the name of
array.

Example)

Dim a%(10)
 :
staion%=2
nid%=NetOpen(station%)
 :
wlen%=NetWrite(nid%,a%(0),10) ‘send a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #1

Dim a%(10)
 :
staion%=1
nid%=NetOpen(station%)
 :
rsize%=NetRead(nid%,a%(0),0) ‘Receive a%(0)-a%(4)
 :
NetClose(nid%)
 :

Station #2

9 Commands

9-90

Dim x%(10)
size% = NetWrite(nid%,x%(1), 6) ‘Send x%(1),x%(2),x%(3)
size% = NetWrite(nid%,x%,6) ‘Compiling error

♦ Compiling error
• If an expression such as a numerical constant instead of a

variable is specified to Network-ID, the error “Bad argument
type of function” occurs.

• If an expression such as a numerical constant instead of a
variable is specified to Data-buffer, the error “Illegal function
call” occurs.

• If a numerical constant out of 0 to 234 is specified to Data-size,
the error “Illegal value of argument” occurs.

♦ Job error
• If the specified network identifier is invalid, the error

“Incorrect usage of command or function” occurs.
• If the specified network identifier is not opened, the error

“Network not opened” occurs.
• If the network definition of the specified network identifier is

not found, the error “Network CR(Communication Reference)
undefined” occurs.

• If the specified data size is out of 0 to 50 bytes, the error
“Network writing size error” occurs.

 See also NetOpen, NetRead, NetClose.

9 Commands

9-91

Not (Operator)

 Function
Executes a logical negation of a number.

 Format
Not Numeric-expression

 Arguments
Parameter Explanation

Numeric-expression A numeric expression.

 Example
a% = &H00FF%
b% = Not a% ‘ &HFF00% substituted for b%.

 Explanation

• The following calculation is performed.
X not X
1 0
0 1

• See “6.4.3 Logical Operator”.

9 Commands

9-92

On Error GoTo (Statement)

 Function
Defines a destination line to jump when a job error occurs.

 Foemat
a) Registration of error routine

On Error GoTo Label
b) Clearing registration of error routine

On Error GoTo 0

 Argument
Parameter Explanation

Label A label to jump. The label represents the entry of an error
routine.

 Example
On Error GoTo *ERROR.HANDLER
 :
 :
‘ Error routine (sometimes called “error handler”)
*ERROR.HANDLER
 err.no%=ERR
 Resume *ERROR.RESUME 'Exit error procedure
*ERROR.RESUME
 Select Case err.no%
 :

 Explanation
♦ On Error GoTo statement defines a destination step or line where a

program jumps when a job error occurs. The destination routine
has to be programmed as an “error routine” that executes the
procedure, for example, that recovers and informs the error. The
destination must be located in the same job.

♦ In the error routine, generally, a program has to recover and
inform the error to check a type of the error using Err function.
Then a program can exit the error routine by Resume statement.

♦ Error routine is frequently called “error handler”.
♦ On Error GoTo statement is not a declaration but a executable

sentence. Therefore, the following example can be programmed to
select an error routine.

Example)
 If mode%=RUNNING Then ‘System mode is RUNNING.
 On Error GoTo *ERROR.1
 Else
 On Error GoTo *ERROR.2
 EndIf

♦ “On Error GoTo 0” clears the current registration of an error
routine. After this execution, a job program stops at error step
when a job error occurs.

♦ After STP system starts or a program downloaded, the
registrations of an error routine for all jobs are cleared.

9 Commands

9-93

♦ Generally, “On Error GoTo Label” is described at the beginning of a
job program.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See “4.5 Error Handling”.

! Note

9 Commands

9-94

On...GoSub / On...GoTo (Statement)

 Function
Branches to one of labels evaluating a numeric expression.

 Format
On Numeric-expression GoTo Label1 [, Label2...]
On Numeric-expression GoSub Label1 [, Label2...]

 Arguments
Parameter Explanation

Numeric-
expression

A numeric expression containing the value from 0
through 255.

Label A label to branch.

 Example #1
‘ On…GoSub
 :
 On a% GoSub *Sub1, *Sub2, *Sub3
 :
‘ Subroutine executed when a%=1
*Sub1
 :

Return
‘ Subroutine executed when a%=2
*Sub1
 :

Return
‘ Subroutine executed when a%=3
*Sub3
 :

Return

 Example #2
‘ On…GoTo
 :
 On a% GoTo *PROC1, *PROC2, *PROC3
 :
‘ Jumped when a%=1
*PROC1
 :
 GoTo *NEXT.PROC
‘ Jumped when a%=2
*PROC2
 :
 GoTo * NEXT.PROC
‘ Jumped when a%=3
*PROC3
 :
 GoTo * NEXT.PROC
 :

9 Commands

9-95

‘ Next procedure
*NEXT.PROC
:

 Explanation
♦ Numeric-expression is evaluated into integer value.
♦ A program jumps to Nth Label according to the integer value N of

Numeric-expression. For example, the value of Numeric-expression
is three, a program jumps to third Label.

♦ If the value of Numeric-expression is negative, a job error occurs.
♦ If the value of Numeric-expression is zero or more than the number

of labels, the next step is executed without branch.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See also GoSub, GoTo.

! Note

9 Commands

9-96

Open (Statement)

 Function
Opens a file in the disk (such as hard disk, memory card) to access.
This function is supported by only WinSTP.

 Format
Open File-name[For File-mode]

[Access Access-type] As [#]File-number

 Arguments
Parameter Explanation

File-name String constant or variable specifying a file name to
open.

File-mode

Specify the following file modes.
APPEND: A file is opened as a sequential file and

data will be appended to it.
BINARY: A file is opened as a binary file.
INPUT: A file is opened as a sequential file with

data input mode.
OUTPUT: A file is opened as a sequential file with

data output mode.
RANDOM: A file is opened as a random access file.
If omitted, RANDOM is selected implicitly.
When the mode except INPUT specified, a file is
created automatically if a file is not found.

Access-type

Specify the following access type.
READ: Allows only reading.
WRITE: Allows only writing.
READ WRITE: Allows both reading and writing.
If omitted, READ WRITE is selected implicitly.

File-number

Constant or variable specifying the number assigned
for the opened file. After the file is opened, this number
has to be used to access the file. Available number is 0
through 47. In case of variable, "#" can be omitted but
in case of a numeral constant, it cannot be omitted.

 Example

• Constant (literal) used
Open “C:¥temp¥temp.txt” For OUTPUT Access WRITE as #1

• Variable used
fname$=“C:¥temp¥temp.txt”
fno%=1
Open fname$ For INPUT Access READ as fno%

 Explanation
The file number already opened cannot be used to open.

 See “4.4.1 How to Access Data File”.

9 Commands

9-97

Open “COM...” (Statement)

 Function
Opens a communication port.

 Format
a) One argument of COM port and communication settings

Open ”COMn:Settings” As [#]File-number
[RobType=Robot-type][RobNoList=Robot-list]

Note) Only constant (literal) is available for underline.
b) Two arguments of COM port and communication settings

Open ”COMn” ”Settings” As [#]File-number
[RobType=Robot-type]][RobNoList=Robot-list]]

Note) Constant (literal) or variable is available for underline.

 Arguments
Parameter Explanation

n
(Port number)

Numerical literal of a COM port number to
communicate. See “4.4.2 How to Communicate with
Peripheral Device” about details.

Settings

Specify RS232C communication parameters as the
following format.
 Speed, Parity, Data-length, Stop-bits
After STP system starts or a program is downloaded,
parameters are initialized to default settings.
Speed: Communication speed by bit-per-second

(bps). Following values are available.
 1200, 2400, 4800, 9600, 19200, 38400,

57600, 115200 [default:115200]
Parity: Parity bit of communication.
 O: Odd parity
 E: Even parity
 N: None parity [default:N]
Data-length: Bit length of one character data.
 7, 8 [default:8]
Stop-bits: Stop bits of communication.
 1, 2 [default:1]
One or all of items can be omitted. If omitted, the last
setting is used for communication.

File-number

Constant or variable specifying the number assigned
for the opened file. After the file is opened, this number
has to be used to access the file. Available number is 0
through 47. In case of variable, "#" can be omitted but
in case of a numeral constant, it cannot be omitted.

Robot-type

Specify a number of a robot controller type when a
robot communication port is opened. A variable is not
available.
HNC-580 series : 580
HAC-8XX(COM0) : 580
Other : 0 or omit “RobType=”.

9 Commands

9-98

Parameter Explanation

Robot-list

This must be specified when Robot-type=580.
A robot controller of type “580” can control the
maximum four virtual robots. A robot number is
assigned to distinguish each virtual robot. The robot
number is defined as “MAINTENANCE” -
“MAINTENANCE DATA” - “STATION NO.” of system
generation data in a controller. Standard robot
numbers are 1, 2, 3 and 4 for each virtual robot.
Specify the list of the robot numbers of virtual robots
that a program attempts to control as the following
format up to maximum four robots.
 Robot-No[, Robot-No][, Robot-No][, Robot-No]
Valid range of a robot number is from 1 through 999.

 Example
a) One argument of COM port and communication settings

‘ COM0---HAC-8XX, Robot numbers 1,2,3
Open “COM0” As #1 RobType=580 RobNoList=1,2,3
‘ COM1---HNC580 series, Robot numbers 1,5,7
Open “COM1:19200,E,7,1” As #1 RobType=580 RobNoList=1,5,7

b) Two arguments of COM port and communication settings
‘ COM2---HNC-3XX
Open “COM2” ”9600,E,7,1” As #1

 Explanation
In case of two arguments of COM port and communication settings, a
variable is available for an argument.
Example)

‘ COM1---HNC580 series, Robot numbers 1,5,7
file$ = “COM1”
para$ = “19200,E,7,1”
fno% = 1
Open file$ para$ As fno% RobNo=580 RobNoList=1,5,7

The communication port that has been already opened cannot be opened
multiply. Moreover, the file number that has been already opened cannot
be used multiply.

 See “4.4.2 How to Communicate with Peripheral Device”, “Chapter 8
Robot Control Programming”.

9 Commands

9-99

Or (Operator)

 Function
Executes a logical addition of two numbers.

 Format
Numeric-expression#1 Or Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = &H000F%
b% = &H0FFF%
c% = a% Or b% ‘ &H0FFF% substituted for c%

 Explanation

• The following calculation is performed.
X Y X or Y
1 1 1
1 0 1
0 1 1
0 0 0

• See “6.4.3 Logical Operator”.

9 Commands

9-100

Pai (Function)

 Function
Gets the value of pi (π).

 Format
Pai

 Argument and Return value
Parameter Explanation

Argument Nothing
Return value The value of pi.

 Example
a# = Pai ‘ the value of pi is substituted for a#.

 Explanation
Pi (π) is the circular constant, 3.1415927.

9 Commands

9-101

PosRec (Function)

 Function
Makes a position data record that contains the specified elements.

 Format
PosRec(X-axis, Y-axis, Z-axis, W-axis, R-axis, C-axis
 , Arm-data, Coordinate-type, M-data, F-code, S-code)

 Arguments and Return value
Parameter Explanation
X-axis
Y-axis
Z-axis
W-axis
R-axis
C-axis

A numeric expression specifying the value of
axis coordinate.

Arm-data

The following words of the robot arm position
have to be specified.
LEFTY: Lefty position
RIGHTY: Righty position

Coordinate-
type

A numeric expression specifying a coordinate
type.
Only zero value is available now.

M-data, A numeric expression specifying M data. Valid
range is from 0 through 255.

F-code, A numeric expression specifying F code. Valid
range is from 0 through 255.

A
rgum

ents

S-code, A numeric expression specifying S code. Valid
range is from 0 through 255.

Return value A position data record that contains the
specified elements.

 Example
x.axis! = 1.1 ‘ X-axis
y.axis! = 2.2 ‘ Y-axis
z.axis! = 3.3 ‘ Z-axis
w.azis! = 4.4 ‘ W-axis
m.data% = 1 ‘ M-data
f.code% = 99 ‘ F-code
s.code% = 0 ‘ S-code
P(10) = PosRec(x.axis!, y.axis!, z.axis!, w.axis!, 0, 0, LEFTY, 0
 , m.data%, f.code%, s.code%)
Move #1, P(10)

 Explanation
♦ Zero value has to be specified to the axis that is not equipped in the

system.

9 Commands

9-102

Print # (Statement)

 Function
Writes character strings or numerals specified in expressions to a file.

 Format
Print #File-number, Expression [|,|Expression...][|,|]
 |;| [|;|]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Expression A string or numeric expression of data to write.

 Example
Print #1, “ABC”

 Explanation
♦ Basically, Print# statement writes data with the following format

adding CR/LF code to the end.

TEXT CR LF

CR (Carriage Return) &H0D
LF (Linefeed) &H0A

♦ Writing data format differs according to whether a string or
number.
• Writing a string

“ABC” is written.

Print #1, “ABC” ABC CR LF

• Writing a number.
The number 123 is written. The sign character (space for
positive value, minus for negative value) is added at the top of
the number and the space is added at the end of the number.

Print #1, 123 123 CR LF

♦ When several expressions specified, writing data format differs
according to a specified delimiter.

a) A delimiter is semicolon and the end of sentence is expression.
Format) Print #File-number, Expression[; Expression…]
Example) Print #1, 123; ”ABC”; ”,”; ”VWXYZ”; -9876
 (1) (2) (3) (4) (5)

123 ABC , VWXYZ -9876 CR LF

(1) (2) (3) (4) (5)

b) A delimiter is comma and the end of sentence is expression.

Format) Print #File-number, Expression[, Expression…]

9 Commands

9-103

When comma is used for delimiter, spaces are filled to the end of
14 characters.
Example) Print #1, ”ABC”, -9876, “XYZ”

ABC -9876

14 characters 14 characters

XYZ CR LF

14 characters

c) A delimiter is semicolon or comma and the end of sentence is
expression.

Format) Print #File-number,
 Expression[|,|Expression [|;|Expression]…]

 |;| |,|
When comma is used for delimiter, spaces are filled to the end of
14 characters.
Example) Print #1, 123; ”ABC”,－9876

123 ABC -9876 CR LF

 14 characters

d) The end of sentence is semicolon.
Format) Print #File-number,
 Expression[|,|Expression [|;|Expression]…];

 |;| |,|
When the sentence is terminated by a semicolon, CR/LF code is
not added at the end.
Example) Print #1, 123; ”ABC”, -9876;

123 ABC -9876

 14 characters

f) The end of sentence is comma.
Format) Print #File-number,
 Expression[|,|Expression [|;|Expression]…],

 |;| |,|
When the sentence is terminated by a comma, CR/LF code is not
added at the end.
Example) Print #1, 123;”ABC”,

123 ABC

 14 charcters

Total length of writing data has to be 255 bytes or less including space, minus
or CR/LF.

! Note

9 Commands

9-104

PrintStr (Statement)

 Function
Makes a string using the specified format and then output a string to the
specified variable. When a parameter descriptor is specified in the format,
the value of the corresponded variable is converted to a string according
to the descriptor.

 Format
PrintStr String-variable, Format [, Parameter#1 [, Parameter#2, ...]]

 Arguments
Parameter Explanation

String-variable A string variable to output.
Format A string expression specifying format to output.

Parameter A variable containing the value that is converted to a
string according to a parameter descriptor.

 Example
para1%=2003 : para2%=4 : para3%=2
PrintStr w$, “year=%d month=%d day=%d”, para1%, para2%,para3%
 ‘ ”year=2003 month=4 day=2” is substituted for w$

 Explanation
♦ In Format, a string started by “%” and terminated by an alphabet

is regarded as a parameter descriptor. If a parameter descriptor is
found in the format, the value of corresponded parameter variable
is converted to a string according to the specified descriptor. The
following descriptors are supported.

Descriptor Function Example
%[N]d A parameter is converted to decimal

integer expression.
N specifies the number of output
characters. If the number of the
actual converted string is less than
N, “0” is filled to the top of a string.
If the number of the actual
converted string is greater than N,
the converted string is outputted as
it is. If N omitted, the converted
string is outputted as it is.

• “12345” is contained in a parameter
variable.

 Descriptor Converted
 "%2d" "12345"
 "%7d" "0012345"
 "%d" "12345"
• “-12345” is contained in a

parameter variable.
 Descriptor Converted
 "%2d" "-1"
 "%7d" "-012345"
 "%d" "-12345"

%[N]x A parameter is converted to
hexadecimal integer expression by
lowercase.
N specifies the number of output
characters. If the number of the
actual converted string is less than
N, “0” is filled to the top of a string.
If the number of the actual
converted string is greater than N,
the converted string is outputted as
it is. If N omitted, the converted
string is outputted as it is.

• “&H0ABC” is contained in a
parameter variable.

 Descriptor Converted
 "%2x" "abc"
 "%4x" "0abc"
 "%x" "abc"

9 Commands

9-105

Descriptor Function Example
%[N]X A parameter is converted to

hexadecimal integer expression by
uppercase.
N specifies the number of output
characters. If the number of the
actual converted string is less than
N, “0” is filled to the top of a string.
If the number of the actual
converted string is greater than N,
the converted string is outputted as
it is. If N omitted, the converted
string is outputted as it is.

• “&H0ABC” is contained in a
parameter variable.

 Descriptor Converted
 "%2x" "ABC"
 "%4x" "0ABC"
 "%x" "ABC"

%[N.M]f A parameter is converted to floating
expression as real value.
N specifies the number of output
characters. If the number of the
actual converted string is less than
N, “0” is filled to the top of a string.
If the number of the actual
converted string is greater than N,
the converted string is outputted as
it is.
M specifies the number of output
characters in the fractional part. If
the number of the actual converted
string is less than M, “0” is filled to
the end of a string. If the number of
the actual converted string is
greater than M, exceeded digits are
removed.
If N.M omitted, the converted string
is outputted as it is.

• “123.456” is contained in a
parameter variable.

 Descriptor Converted
 "%4.2f" "123.45"
 "%7.2f" "0123.45"
 "%f" "123.456"
• “-123.456” is contained in a

parameter variable.
 Descriptor Converted
 "%4.2f" "-123.45"
 "%8.2f" "-0123.45"
 "%f" "-123.456"

%[N]s A parameter is converted to string
expression.
N specifies the number of output
characters. If the number of the
actual converted string is less than
N, space is filled to the end of a
string. If the number of the actual
converted string is greater than N,
right side of a string is removed. If
N omitted, the converted string is
outputted as it is.

• “abcdefgh” is contained in a
parameter variable.

 Descriptor Converted
 "%4s" "abcd"
 "%10s" "abcdefgh "
 "%s" "abcdefgh"

♦ Maximum number of parameter descriptors and parameter

variables is 62.
♦ "%%" has to be described in a parameter descriptor to output “%” as

a character.
♦ If the value type of a parameter descriptor differs from the type of

the corresponded variable, it will be converted by the following
rules.
• %[N]d

If the specified variable is single-precision real type (!), area of
the variable is regarded as 32-bits (4 bytes) integer. If the
specified variable is double-precision real type (#), a job error

9 Commands

9-106

occurs. If the specified variable is string type ($), the first byte
is converted as integer.

• %[N]x or %[N]X
If the specified variable is single-precision real type (!), 4-bytes
binary area of the variable is converted to a hexadecimal
expression. If the specified variable is double-precision real
type (#), 8-bytes binary area of the variable is converted to a
hexadecimal expression. If the specified variable is string type
($), the first byte is converted to a hexadecimal expression.

• %[N.M]f
If the specified variable is 2-bytes integer (%), 4-bytes integer
(&) or string type ($), a job error occurs.

• %[N]s
If the specified variable is not string type, a job error occurs.

♦ Total size of an output string is limited to 255 bytes. If the size
exceeds 255 bytes, the tail of an output string is removed.

♦ It has to be careful to use “f” or “F” descriptor specifying a real type
variable. For example, (1) dividing the value by almost zero. (2)
calculating the exponential value. (3) dividing the value by huge
value. These calculation causes that the result of (1)(2) may be huge,
the result of (3) may be tiny. Generally, if the real value expressed
as “a.aaaE+nnn” or “a.aaaE-nnn” is outputted by “f” or “F”
descriptor, the size of output string becomes almost “nnn”. The
following example checks the huge or tiny value before PrintStr
execution.

Example)
If x# >= 1.0E-10 and x# <= 1.0E+10 Then

 PrintStr text$, "%f", x# 'about 10 bytes for output
Endif

♦ If the number of parameter descriptors differs from the number of
parameter variables, the statement is executed as follows.
• the number of parameter descriptors < the number of

parameter variables
No error occurs when a program compiled or runs. Unused
variables are never referred.

• the number of parameter descriptors > the number of
parameter variables
No error occurs when a program compiled, but a job error
occurs when a program runs.

 See also ScanStr.

9 Commands

9-107

Pulse (Statement)

 Function
Substitutes a value for a variable for the specified period as pulse output.

 Format
Pluse Variable=Expresion#1, Expresion#2

 Arguments
Parameter Explanation

Variable A variable to be pulsed. String variable is not available.
Expresion#1 A number substituted for a variable.

Expresion#2 The period of pulsing substitution by second. Available
range is form 0.000 through 2147483.647 second

 Example
Pluse OUTB(0)=1, 2.0 ‘ OUTB(0)=1 for 2.0 sec.
Pluse OUTD(1)=&HFF, 3 ‘ OUTD(1)=&HFF for 3 sec.
Pluse a%=10, 5.1 ‘ a%=10 for 5.1 sec.

 Explanation
Pulse statement sets the value of Expression#1 to Variable for the period
of Expression#2.
After the time of Expression#2 passes, Variable resumes the previous
value.

9 Commands

9-108

RchkHrcs (Function)

 Function
Checks a HRCS protocol frame received.

 Format
RchkHrcs (File-number)

 Argument and Return value
Parameter Explanation

Argument File-number
A file number corresponded to the
communication port must be specified. Valid
range is from 0 through 47.
A constant or variable can be specified.

Return value
If a HRCS frame has been received, the
function returns true value (-1). If not, it
returns false value (0).

 Example
Open "COM1:115200,N,8,1" As #1 'Open COM1

*LOOP
'Loop if HRCS data not received.
If Not RchkHrcs(1) Then GoTo *LOOP
ReadHrcs #1, recv$ 'Set received data to recv$.

 Explanation
It is checked whether the following HRCS protocol frame has been
received or not.

STX TEXT ETX
 LRC

• STX (Start of Text)
The head of HRCS protocol frame. (&H02)

• ETX (End of Text)
The end of HRCS protocol frame. (&H03)

• LRC (Longitudinal Redundancy Check)
LRCi is a check code for communication data calculated by exclusive
OR of bytes in TEXT to ETX.

If STP has already received a HRCS protocol frame, the function returns
true value (-1). If not received, the function returns false value (0).

 See also ReadHrcs.

i See “Appendix B LRC Calculation”.

9 Commands

9-109

ReadHrcs (Statement)

 Function
Reads a HRCS protocol frame.

 Format
ReadHrcs #File-number, Variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Variable A variable to set a received HRCS protocol frame.

 Example
Open "COM1:115200,N,8,1" As #1 'Open COM1

*LOOP
'Loop if HRCS data not received.
If Not RchkHrcs(1) Then GoTo *LOOP
ReadHrcs #1, recv$ 'Set received data to recv$.

 Explanation
A HRCS protocol frame is shown below.
ReadHrcs statement receives a HRCS protocol frame and extracts TEXT
part in the figure to set to a variable.

STX TEXT ETX
 LRC

• STX (Start of Text)
The head of HRCS protocol frame. (&H02)

• ETX (End of Text)
The end of HRCS protocol frame. (&H03)

• LRC (Longitudinal Redundancy Check)
LRCi is a check code for communication data calculated by exclusive
OR of bytes in TEXT to ETX.

 See also RchkHrcs, WriteHrcs.

i See “Appendix B LRC Calculation”.

9 Commands

9-110

Ref (Statement)

 Function
Sets data to reserved memory in a robot.

 Format
Ref(#File-number[[rno:Robot-number]], Reserved-memory)=Data

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication
port must be specified. Valid range is from 0
through 47.
In case of variable, "#" can be omitted but in case of
a numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is
1 through 999. See chapter 8 about the robot
number. It can be specified as a number or variable.
If the robot number is omitted, the number
registered by SetRobNo function is used as the
current robot number.

Reserved-
memory

A reserved memory in a robot to set. Available
memories are shown below.

IRBn: Robot input bit
IRDn: Robot input byte
ORBn: Robot output bit
ORDn: Robot output byte
PMn: Robot position memory
MMn: M data
FMn: F code
SMn: S code
EXPARAn: Extended parameter

Data

Setting data to a robot reserved memory. The valid
ranges of values are shown below.

IRBn: 0 / 1
IRDn: 0 to 255 (&H0 to &HFF)
ORBn: 0 / 1
ORDn: 0 to 255 (&H0 to &HFF)
PMn: STP position memory P
MMn: 0 to 99, and 255
FMn: 0 to 99
SMn: 0 to 99
EXPARAn: n=0-500 &H0 - &HFFFFFFFF
 n=500-1000 0.0 - 2147483.647
 n=1001-1099 &H0-&HFFFFFFFF

 Example
♦ Set 1 to robot output bit #10 in robot #1

Ref(#1[rno:1], ORB(10))=1
♦ Set STP P(100) to PM(2) in robot #2.

Ref(#1[rno:2], PM(2)) = P(100)
♦ Set 99 to M data of PM(200) in robot #3.

Ref(#1[rno:3], MM(200)) = 99
♦ Set 1000 to extended parameter #10 in robot #2.

Ref(#1[rno:2], ERXPRA(10))=1000

9 Commands

9-111

 Explanation
Only STP P memory can be substituted for robot position memory PM.

 See “4.2 Reserved Memory”.

9 Commands

9-112

Ref (Function)

 Function
Gets data from reserved memory in a robot.

 Format
Ref(#File-number[[rno:Robot-number]], Reserved-memory)

 Arguments and Return value
Parameter Explanation

File-
number

A file number corresponded to the communication
port must be specified. Valid range is from 0
through 47.
In case of variable, "#" can be omitted but in case of
a numeral constant, it cannot be omitted.

Robot-
number

A station number of a virtual robot. Valid number
is 1 through 999. See chapter 8 about the robot
number. It can be specified as a number or variable.
If the robot number is omitted, the number
registered by SetRobNo function is used as the
current robot number.

Argum
ents

Reserved
-memory

A reserved memory in a robot to get. Available
memories are shown below.

IRBn: Robot input bit
IRDn: Robot input byte
ORBn: Robot output bit
ORDn: Robot output byte
PMn: Robot position memory
MMn: M data
FMn: F code
SMn: S code
STATUSn: Robot status
HERE: Robot current position
EXPARAn: Extended parameter

Return value

The following range of the value is returned.
IRBn: 0 / 1
IRDn: 0 to 255 (&H0 to &HFF)
ORBn: 0 / 1
ORDn: 0 to 255 (&H0 to &HFF)
PMn: STP position memory P
MMn: 0 to 99, and 255
FMn: 0 to 99
SMn: 0 to 99
STATUSn: 0 to 255 (&H0 to &HFF)
HERE: STP position memory P
EXPARAn: n=0-500 &H0 - &HFFFFFFFF
 n=500-1000 0.0 - 2147483.647
 n=1001-1099 &H0-&HFFFFFFFF

9 Commands

9-113

 Example
♦ Robot input byte #5 in robot #1 is substituted for dat%.

dat% = Ref(#1[rno:1], IRD(5))
♦ PM(100) in robot #1 is substituted for STP P(0).

P(0) = Ref(#1[rno:1], PM(100))
♦ M data of PM(1) in robot #1 is substituted for MD(1).

MD(1) = Ref(#1[rno:1], MM(1))
♦ STATUS0 (robot error code) in robot #1 is substituted for ecode%.

ecode% = Ref(#1[rno:1], STATUS0)
♦ Current position of robot #1 is substituted for STP P(100).

P(100) = Ref(#1[rno:1],HERE)
♦ Extended parameter #10 in robot #1 is substituted for para%.

para% = Ref(#1[rno:1],EXPARA(10))

 Explanation
♦ Robot position memory PM or current position HERE can be

substituted for only STP P memory.
♦ Multiple usage of Ref function in a sentence is not allowed.

Example)
‘ !!This is not allowed!!
If Ref(#1[rno:1],IRD0)=&H10 or Ref(#2[rno:2],IRD0)=&H10 Then

 See “4.2 Reserved Memory”.

9 Commands

9-114

Rem (Statement)

 Function
Defines a comment sentence.

 Format
Rem [Comment]

 Argument
Parameter Explanation

Comment Write comment (annotation).

 Format
Rem --- Robot Control Program ---

 Explanation
♦ Rem statement is not an executable command. Using Rem

statement, any sentence can be described without execution.
Described Rem sentence is outputted to the source list as it is.

♦ Apostrophe (‘) can replace Rem statement.
Example)

‘ --- Robot Control Program ---
♦ After Rem sentence adding a colon, a next executable sentence

(multi statements) cannot be described.
Example)
 ‘ !!This example cannot be available!!
 Rem --- Robot Control Program --- : a$=Date$
 ‘ “: a$=Date$” is regarded as comment

♦ When Rem statement is described after an executable sentence, a
colon is not necessary.

Example)
 a$=Date$ Rem --- Robot Control Program ---

9 Commands

9-115

Resume (Statement)

 Function
Exits an error process, then resumes executing the main program.

 Format
Resume [Next|Label]

 Argument
Parameter Explanation

(Omitted) Resume executing the step where a job error occurs.

Next Resume executing the next of the step where a job error
occurs.

Label Resume executing a program at the specified label.

 Example

• Resume

• Resume Next

• Resume *

 Explanation
When a job error has not occurred, an error (&H12) occurs.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See also “4.5 Error Handling”, Err, On Error GoTo.

! Note

9 Commands

9-116

Return (Statement)

 Function
Exits a subroutine and returns to the main program.

 Format
Return [Label]

 Arguments
Parameter Explanation

(Omitted) A program exits a subroutine and then returns to the
next of the step calling the subroutine.

Label A program exits a subroutine and then returns to the
specified label.

 Example

• Return

• Return *EXIT

 Explanation
♦ Multiple Return statements can be described in a subroutine.
♦ After calling a subroutine by GoSub statement, the GoSub stack

counter counts up. After returning from a subroutine by Return
statement, the GoSub stack counter counts down. If Return
statement is executed when the GoSub stack counter is zero, a job
error “RETUNR without GOSUB” occurs.

♦ Return statement with the specified Label makes a program very
complex and causes low maintenancebility of a program. From the
viewpoint of structured programming, “Return Label” must not be
used.

There are the following rules for using a label.
 The top of label name has to be an asterisk “ * “.
 Execept asterisk, the first character of label name has to be alphabetic.
 Execept asterisk, available characters in label name are alphabetic,

numerical or period “ . “, regardless of upper or lower case.
 Label name after asterisk cannot be the reserved name (e.g. *MOVE). But,

a part of label name after asterisk can be the reserved name (e.g.
*MOVE.LOOP).

 The length of label name is maximum 16 characters except asterisk.
 Label name definition has to be written at the top of one line.

 See also “Chapter 7 Structured Programming“, GoSub, On Error GoTo,
On GoSub.

! Note

9 Commands

9-117

Right$ (Function)

 Function
Gets the string containing a specified number of characters from the
right side of a string.

 Format
Right$(String, Length)

 Arguments and Return value
Parameter Explanation

String String expression from which the rightmost
characters are returned.

Arguments
Length

Numeric expression indicating number of
characters to return. Valid range is from 0
through 255.

Return value Rightmost string.

 Example
a$=”HrBasic”
b$=Right$(a$, 5) ‘ ”Basic” is substituted for b$

 Explanation
If Length exceeds the length of String, the function returns the same as
the specified String.
If Length is zero, the function returns a null string.

 See also Left$, Mid$.

9 Commands

9-118

RobCheckBpZone (Function)

 Function
Checks BP/ZONE state of robot.
Supported by HNC-580 series and HAC-8XX controller.

 Format
RobCheckBpZone(#File-number[[rno:Robot-number]], BP/ZONE-number)

 Arguments and Return value
Parameter Explanation

File-
number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-
number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

A
rgum

ents

BP/ZONE
-number

BP/ZONE number to check. Valid range is from 1
through 8.

Return value

Current BP/ZONE state of a robot.
If the current position of a robot is the inside of
BP/ZONE setting, the function returns true value (-1). If
not, it returns false value (0).

 Example
Open "COM1:115200,N,8,1" As #1
 :
If RobCheckBpZone(#1,[rno:2], 2) Then GoTo *RECOVER1

 Explanation
Eight BP/ZONE state can be detected per a robot in a controller.
BP/ZONE state means the following state of the current position.

a) BP (BASE POS)
Whether the current position of a robot is near the specified robot
base position.

b) ZONE
Whether the current position of robot axes is in the range between
the specified upper limit and lower limit.

Refer to “Robot Operation Manual” about BP/ZONE.
The function can be executed during motion.

9 Commands

9-119

RobCheckCurPos (Function)

 Function
Checks whether the current position of robot axes is near the position of
the specified address.

 Format
RobCheckCurPos(#File-number[[rno:Robot-number]]

, Position-address, Axes)

 Arguments and Return value
Parameter Explanation

File-
number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-
number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered
by SetRobNo function is used as the current robot
number.

Position-
address

Position address of a robot compared with the current
position. Valid range is from 0 through 3999.

A
rgum

ents
Axes Robot axes flags to check the current position.

Return value
If the current position of axes is near the specified
position, the function returns true value (-1). If not, it
returns false value (0).

 Example
RobSetPosRange #fno%[rno:2], 2.0, , , 3.0 ' Set checking range.
If RobCheckCurPos (#fno%[rno:2], 823, 9) <> 0 The
 :
Else
 :
EndIf

 Explanation
The function checks whether the current position of robot axes is near
the position of the specified address.
Bits of Axes are assigned as follows.
Bit 7 6 5 4 3 2 1 0

Axis - - C R W Z Y X

Bit value 27

(128)
26

(64)
25

(32)
24

(16)
23
(8)

22
(4)

21
(2)

20

(1)
Specify checking axes to add each bit logically. For example, when X, Y
and R axis are intended to check, 1+2+16=19 (&H1 or &H2 or
&H10=&H13) has to be specified.
If the current position of the specified all axes is within the range
specified by RobSetPosRange statement, the function returns true value.

9 Commands

9-120

If RobSetPosRange statement has not been executed, the default value
1.0 (mm or deg) is used for the range.
The function can be executed during motion.

 See also RobSetPosRange.

Axis position
 Minus Plus Specified address position

+D-D
TRUE FALSE FALSE

D: RobSetPosRange

9 Commands

9-121

RobCheckStop (Function)

 Function
Checks a robot is stopping now.

 Format
RobCheckStop(#File-number[[rno:Robot-number]])

 Arguments and Return value
Parameter Explanation

File-
number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

A
rgum

ents Robot-
number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Return value If a robot is stopping now, the function returns true
value (-1). If not, it returns false value (0).

 Example
Seq #1[rno:1]
 Move #1[rno:1], PM(PM.ADDR)
 Finish #1[rno:1]
*CHECK
 If Not RobCheckStop(#1[rno:1]) Then GoTo *CHECK ‘動作中
SeqEnd #1[rno:1]

 Explanation
RobCheckStop function examines STATUS9 in robot status. See “4.2.8
STATUS” about STATUS9.

9 Commands

9-122

RobClearErr (Statement)

 Function
Clears error state of a robot.

 Format
RobClearErr #File-number[[rno:Robot-number]]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered
by SetRobNo function is used as the current robot
number.

 Example
RobClearErr #1[rno:2]

 Explanation
RobClearErr statement clears error state held in a robot controller after
a robot error has occurred. It is necessary that RobClearErr statement is
executed before a program restarts to move a robot.
However, some kind of robot errors needs power-reset of the controller.
If RobClearErr is executed during motion, a job error occurs.

9 Commands

9-123

RobDistance (Statement)

 Function
Gets the distance between two robots in the world coordinates system
used for the robot collision check.
Note) Only supported by HAC-8XX controller.

 Format
RobDistance COM-port#1, Robot-number#1

, COM-port#2, Robot-number#2, Variable

 Arguments
Parameter Explanation

COM-port#1
A numeric expression specifying a COM port number to
control the first robot.
Only COM0 is available for HNC-8XX controller.

Robot-
number#1

A numeric expression specifying the first robot station
number. Valid range is from 1 through 999.

COM-port#2
A numeric expression specifying a COM port number to
control the second robot.
Only COM0 is available for HNC-8XX controller.

Robot-
number#2

A numeric expression specifying the second robot station
number. Valid range is from 1 through 999.

Variable

A variable to get the distance in the world coordinates
system.
Only single or double precision real type (!)(#) is
available. In case of other type, a compiling error occurs.

 Example
‘ Get the distance between robot#1 and robot#2 of COM0.
comno% = 0 ‘ COM0
RobDistance comno%, 1, comno%, 2, distance#

 Explanation
♦ “The world coordinate system” is the coordinate system that has

the common space for the robots where the collision check of robots
can be executed.

♦ RobDistance statement is available only when the collision check
data is defined in a HAC system. If it is not defined, the job error
131, “Local-World coordinates conversion data not defined”, occurs
when running.

♦ RobDistance statement can be executed during robot motion.
♦ Refer to the document of collision check about the definition of

collision check data.

 See also CollisionCheck, RobWorldPos.

9 Commands

9-124

RobGetCurAveTorq (Statement)

 Function
Reads the current motor effective torque (current) of axes.
A unit of the read torque is percentage of rated torque (current).
Supported by HAX-8XX controller.

 Format
RobGetCurAveTorq #File-number[[rno:Robot-number]], Motor-torque
RobGetCurAveTorq #ﾌｧｲﾙ番号[[rno:ﾛﾎﾞｯﾄ番号]], 読出しトルク

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Motor-torque

One dimension array to set motor effective torque.
Only long integer (32-bits) type variable (&) is available.
Six and over elements are needed for array volume. If
the array contains less than five elements, other variable
area may be destroyed.

 Example
Dim avetorq&(6)
RobGetCurAveTorq #1[rno:2], avetorq&(1)
 ‘ X-axis motor effective torque set to avetorq&(1).
 ‘ Y-axis motor effective torque set to avetorq&(2).
 ‘ Z-axis motor effective torque set to avetorq&(3).
 ‘ W-axis motor effective torque set to avetorq&(4).
 ‘ R-axis motor effective torque set to avetorq&(5).
 ‘ C-axis motor effective torque set to avetorq&(6).

 Explanation
RobGetCurAveTorq statement can be executed whether a robot is
ONLINE or not.

9 Commands

9-125

RobGetCurPos (Statement)

 Function
Reads the current robot position indicated by the motor encoder.
Supported by HAX-8XX controller.

 Format
RobGetCurPos #File-number[[rno:Robot-number]], Position-memory

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-numbe
r

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Position-
memory

STP P memory to set the current robot position.
If P memory is not specified, a compiling error occurs.

 Example
DimPos 100 ‘ Use P(0) to P(99)
RobGetCurPos #1[rno:2], P(10)
 ‘ X-axis current position set to PX(10).
 ‘ Y-axis current position set to PX(10).
 ‘ Z-axis current position set to PX(10).
 ‘ W-axis current position set to PX(10).
 ‘ R-axis current position set to PX(10).
 ‘ C-axis current position set to PX(10).

 Explanation
♦ RobGetCurPos statement reads the robot position that the motor

encoder of the axis indicates currently. If a robot moves with high
speed, the position read by RobGetCurPos statement is more exact
than Ref(#n, HERE) statement.

♦ A unit of read position value is “mm” or “degree”.
♦ The items except axis coordinates in P memory are not overwritten

by RobGetCurPos statement.
♦ RobGetCurPos statement can be executed whether a robot is

ONLINE or not.

9 Commands

9-126

RobGetCurSpeed (Statement)

 Function
Reads the current motor speed of axes.
A unit of the read value is rpm (rotations per minute).
Supported by HAX-8XX controller.

 Format
RobGetCurSpeed #File-number[[rno:Robot-number]], Motor-speed

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Motor-speed

One dimension array to set motor speed.
Only long integer (32-bits) type variable (&) is available.
Six and over elements are needed for array volume. If
the array contains less than five elements, other variable
area may be destroyed.

 Example
Dim speed&(6)
RobGetCurSpeed #1[rno:2], speed&(1)
 ‘ X-axis motor speed set to speed&(1).
 ‘ Y-axis motor speed set to speed&(2).
 ‘ Z-axis motor speed set to speed&(3).
 ‘ W-axis motor speed set to speed&(4).
 ‘ R-axis motor speed set to speed&(5).
 ‘ C-axis motor speed set to speed&(6).

 Explanation
RobGetCurSpeed statement can be executed whether a robot is ONLINE
or not.

9 Commands

9-127

RobGetCurTorq (Statement)

 Function
Reads the current motor torque (current) of axes.
A unit of the read torque is percentage of rated torque (current).
Supported by HAX-8XX controller.

 Format
RobGetCurTorq #File-number[[rno:Robot-number]], Motor-torque

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Motor-torque

One dimension array to set motor torque.
Only long integer (32-bits) type variable (&) is available.
Six and over elements are needed for array volume. If
the array contains less than five elements, other variable
area may be destroyed.

 Example
Dim torque&(6)
RobGetCurTorq #1[rno:2], torque&(1)
 ‘ X-axis motor torque set to torque&(1).
 ‘ Y-axis motor torque set to torque&(2).
 ‘ Z-axis motor torque set to torque&(3).
 ‘ W-axis motor torque set to torque&(4).
 ‘ R-axis motor torque set to torque&(5).
 ‘ C-axis motor torque set to torque&(6).

 Explanation
RobGetCurTorq statement can be executed whether a robot is ONLINE
or not.

9 Commands

9-128

RobReadSG (Statement)

 Function
Reads SG (System Generation) data of a robot.
Note) Only supported by HNC-580 series and HAC-8XX controller.

 Format
RobReadSG #File-number[[rno:Robot-number]], SG-group-name

, Array-variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

SG-group-
name

A string constant, variable specifying a SG group name
of SG data to get. The format of a SG group name is;
 “Main-group-name¥Sub-group-name”
See “Explanation”.

Array-variable

A top elements of an array variable to which SG data is
read. Long integer (&), single precision real (!), double
precision real (#) and string ($) type are available for an
array. The reading size of SG data varies by the kind of
SG group, but the capacity of an array must be defined
sufficiently.

 Example
‘ Define an array that has sufficient area for SG data.
Dim sg.data!(50)
 :
‘ Reads SG data of ”LIMIT¥AREA LIMIT” group to
‘ sg.data!(1), sg.data!(2),...
RobReadSG #fno%[rno:1], "LIMIT¥AREA LIMIT", sg.data!(1)
‘ Modify SG data.
sg.data!(5) = sg.data!(5) - 5.0! ‘ upper limit Z to -5.0mm
sg.data!(6) = sg.data!(6) + 2.0! ‘ lower limit Z to +2.0mm
‘ Write SG data.
RobWriteSG #fno%[rno:1], "LIMIT¥AREA LIMIT", sg.data!(1)

 Explanation
♦ RobReadSG statement reads SG data of the specified SG group to

the specified array variable.
♦ Available SG group name list is shown below.

• HNC-580 series and HAC-8XX controller
“LIMIT¥ADDRESS MAX”
“LIMIT¥AREA LIMIT”
“MAINTE¥EXPANSION A”

9 Commands

9-129

“MAINTE¥EXPANSION B”
“MAINTE¥MAINTENANCE DATA”
“ORIGIN¥SET-UP SYSTEM”
“ORIGIN¥AXIS DIRECTION”
“ORIGIN¥AXIS SELECT”
“ADJUST¥AR TYPE ADJUST”
“ADJUST¥MB TYPE ADJUST”
“CAPABILITY¥ROBOT CAPABILITY”
“CAPABILITY¥EXPANSION A”

♦ Refer to “System Generation” and “System Generation List” in the
robot controller operation manual about SG group.

♦ The elements of the specified SG group are set to the array variable
sequentially in the order that is described at the “System
Generation List” in the robot controller operation manual. After the
example program is executed, SG data is set to the variable as
follows.

Element of array Data name Meaning
sg.data!(1) UPPER LMT A Upper area limit of X(A) axis
sg.data!(2) LOWER LMT A Lower area limit of X(A) axis
sg.data!(3) UPPER LMT B Upper area limit of Y(B) axis
sg.data!(4) LOWER LMT B Lower area limit of Y(B) axis
sg.data!(5) UPPER LMT Z Upper area limit of Z axis
sg.data!(6) LOWER LMT Z Lower area limit of Z axis
sg.data!(7) UPPER LMT W Upper area limit of W axis
sg.data!(8) LOWER LMT W Lower area limit of W axis
sg.data!(9) UPPER LMT R Upper area limit of R axis
sg.data!(10) LOWER LMT R Lower area limit of R axis
sg.data!(11) UPPER LMT C Upper area limit of C axis
sg.data!(12) LOWER LMT C Lower area limit of C axis

♦ An element of some group may contain string data. In this case, a
string variable has to be specified to RobReadSG statement. String
data of the SG group is read to the corresponded element of a string
array. Other number data is converted to the string and then set to
the array. You can find a string type element of SG group that is
described as “Selection” in “System Generation List”.

♦ If a string element of SG data is read to numerical type array, a job
error occurs when running.

 See also RobWriteSG.

9 Commands

9-130

RobReadSvoPara (Statement)

 Function
Reads servo parameter of a robot.
Note) Only supported by HNC-580 series and HAC-8XX controller.

 Format
RobReadSvoPara #File-number[[rno:Robot-number]], Axis-number

, Array-variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Axis-number

A numeric expression specifying an axis number to get
servo parameter. The axis numbers are;
X-axis: 1
Y-axis: 2
Z-axis: 3
W-axis: 4
R-axis: 5
C-axis: 6

Array-variable

A top elements of an array variable to which servo
parameter is read. Only long integer type (&) are
available for an array. The reading size of servo
parameter varies by the kind of a controller type, but
the capacity of an array must be defined sufficiently.

 Example
‘ Define an array that has sufficient area for servo parameter.
Dim svo.para&(50)
 :
‘ Reads servo parameter of X-axis to svo.para&(1), svo.para&(2),...
axis% = 1 ‘ X-axis
RobReadSvoPara #fno%[rno:1], axis%, svo.para&(1)
‘ Modify servo parameter
svo.para&(20) = svo.para&(20) - 2 ‘ Positive torque limit to -2%
svo.para&(21) = svo.para&(21) - 2 ‘ Negative torque limit to -2%
‘ Write servo parameter
RobWriteSvoPara #fno%[rno:1], axis%, svo.para&(1)

 Explanation
♦ RobReadSvoPara statement reads servo parameter of the specified

axis to the specified array variable.
♦ Refer to “Automatic Creation of Robot Data” - “Servo Parameter” in

the robot controller operation manual about servo parameter. The

9 Commands

9-131

elements of the specified servo parameter are set to the array
variable sequentially in the order that is described in the manual.

 See also RobWriteSvoPara.

9 Commands

9-132

RobSetPosRange (Statement)

 Function
Sets the position range that is used for checking a robot near the specific
position.

 Format
RobSetPosRange #File-number[[rno:Robot-number]]

[, [X-axis][, [Y-axis][, [Z-axis][, [W-axis][, [R-axis][, C-axis]]]]]]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

X-axis
Y-axis
Z-axis
W-axis
R-axis
C-axis

The checking position range. Integer or real constant,
and variable can be specified. A unit of value is “mm” or
“degree”. If omitted, the default value 1.0 mm(degree) is
used.

 文例

• X range=10.0mm, Y range=20.0mm, Z range30.0mm, Other
range=1.0mm for robot #2

RobSetPosRange #1[rno:2], 10.0, , , 20.0, ,30.0

• Y range=5.0mm, Other range=1.0mm for robot #2
RobSetPosRange #1[rno:2], , 5.0

 Explanation
The value set by this statement is used by RobCheckCurPos function.
Specify the value “D” in the following figure for each axis.

 See also RobCheckCurPos.

Axis position
 Minus Plus Specified address position

+D-D
TRUE FALSE FALSE

D: RobSetPosRange

9 Commands

9-133

RobWorldPos (Statement)

 Function
Gets the robot current position in the world coordinates system used for
the robot collision check.
Note) Only supported by HAC-8XX controller.

 Format
RobWorldPos COM-port, Robot-number, P-memory

 Arguments
Parameter Explanation

COM-port
A numeric expression specifying a COM port number to
control a robot.
Only COM0 is available for HNC-8XX controller.

Robot-
number

A numeric expression specifying the robot station
number. Valid range is from 1 through 999.

P-memory

STP P(n) memory to which the current position in the
world coordinates system is set. A compiling error occurs
except P memory.
In P(n), axis coordinates are set to PX(n), PY(n), PZ(n),
PW(n), PR(n), PC(n) by millimeter or degree.
The following elements are initialized as follows:
PARM(n) 0
PDM(n) 255
PDF(n) 0
PDS(n) 0

 Example
comno% = 0 ‘ COM0
robno% = 1 ‘ Robot#1
RobWorldPos comno%, robno%, P(10) ‘ World coordinates set to P(10)

 Explanation
♦ “The world coordinate system” is the coordinate system that has

the common space for the robots where the collision check of robots
can be executed.

♦ RobWorldPos statement is available only when the collision check
data is defined in a HAC system. If it is not defined, the job error
131, “Local-World coordinates conversion data not defined”, occurs
when running.

♦ RobDistance statement can be executed during robot motion.
♦ Refer to the document of collision check about the definition of

collision check data.

 See also CollisionCheck, RobDistance.

9 Commands

9-134

RobWriteSG (Statement)

 Function
Writes SG (System Generation) data of a robot.
Note) Only supported by HNC-580 series and HAC-8XX controller.

 Format
RobWriteSG #File-number[[rno:Robot-number]], SG-group-name

, Array-variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

SG-group-
name

A string constant, variable specifying a SG group name
of SG data to set. The format of a SG group name is;
 “Main-group-name¥Sub-group-name”
See “Explanation”.

Array-variable

A top elements of an array variable that contains SG
data to write. Long integer (&), single precision real (!),
double precision real (#) and string ($) type are available
for an array. The writing size of SG data varies by the
kind of SG group.

 Example
‘ Define an array that has sufficient area for SG data.
Dim sg.data!(50)
 :
‘ Reads SG data of ”LIMIT¥AREA LIMIT” group to
‘ sg.data!(1), sg.data!(2),...
RobReadSG #fno%[rno:1], "LIMIT¥AREA LIMIT", sg.data!(1)
‘ Modify SG data.
sg.data!(5) = sg.data!(5) - 5.0! ‘ upper limit Z to -5.0mm
sg.data!(6) = sg.data!(6) + 2.0! ‘ lower limit Z to +2.0mm
‘ Write SG data.
RobWriteSG #fno%[rno:1], "LIMIT¥AREA LIMIT", sg.data!(1)

 Explanation
♦ RobWriteSG statement writes SG data of the specified SG group

from the specified array variable.
♦ Available SG group name list is shown in the explanation of

RobReadSG statement.
♦ Refer to “System Generation” and “System Generation List” in the

robot controller operation manual about SG group.
♦ The elements of the array are written to SG data in a robot

sequentially in the order that is described at the “System

9 Commands

9-135

Generation List” in the robot controller operation manual. After the
example program is executed, SG data is written as follows.

Element of array Data name Meaning
sg.data!(1) UPPER LMT A Upper area limit of X(A) axis
sg.data!(2) LOWER LMT A Lower area limit of X(A) axis
sg.data!(3) UPPER LMT B Upper area limit of Y(B) axis
sg.data!(4) LOWER LMT B Lower area limit of Y(B) axis
sg.data!(5) UPPER LMT Z Upper area limit of Z axis
sg.data!(6) LOWER LMT Z Lower area limit of Z axis
sg.data!(7) UPPER LMT W Upper area limit of W axis
sg.data!(8) LOWER LMT W Lower area limit of W axis
sg.data!(9) UPPER LMT R Upper area limit of R axis
sg.data!(10) LOWER LMT R Lower area limit of R axis
sg.data!(11) UPPER LMT C Upper area limit of C axis
sg.data!(12) LOWER LMT C Lower area limit of C axis

♦ An element of some group may contain string data. In this case, Set
string data of the SG group to the string array, and set other
number data as the numerical string after conversion to the string
array. Then specify the string variable RobReadSG statement. You
can find a string type element of SG group that is described as
“Selection” in “System Generation List”.

 See also RobReadSG.

9 Commands

9-136

RobWriteSvoPara (Statement)

 Function
Writes servo parameter of a robot.
Note) Only supported by HNC-580 series and HAC-8XX controller.

 Format
RobWriteSvoPara #File-number[[rno:Robot-number]], Axis-number

, Array-variable

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Axis-number

A numeric expression specifying an axis number to write
servo parameter. The axis numbers are;
X-axis: 1
Y-axis: 2
Z-axis: 3
W-axis: 4
R-axis: 5
C-axis: 6

Array-variable
A top elements of an array variable that contains servo
parameter to write. Only long integer type (&) are
available for an array. The writing size of servo
parameter varies by the kind of a controller type.

 Example
‘ Define an array that has sufficient area for servo parameter.
Dim svo.para&(50)
 :
‘ Reads servo parameter of X-axis to svo.para&(1), svo.para&(2),...
axis% = 1 ‘ X-axis
RobReadSvoPara #fno%[rno:1], axis%, svo.para&(1)
‘ Modify servo parameter
svo.para&(20) = svo.para&(20) - 2 ‘ Positive torque limit to -2%
svo.para&(21) = svo.para&(21) - 2 ‘ Negative torque limit to -2%
‘ Write servo parameter
RobWriteSvoPara #fno%[rno:1], axis%, svo.para&(1)

 Explanation
♦ RobWriteSvoPara statement writes servo parameter of the

specified axis from the specified array variable.

• Refer to “Automatic Creation of Robot Data” - “Servo Parameter” in
the robot controller operation manual about servo parameter. The
elements of the array are written to servo parameter sequentially
in the order that is described in the manual.

9 Commands

9-137

 See also RobReadSvoPara.

9 Commands

9-138

ScanStr (Function)

 Function
Scans a string according to the specified format. If the string matches the
format, the function returns true value (-1). If not, it returns false value.
Moreover, the function gets the value as parameter from a string by a
parameter operator in the format.

 Format
ScanStr(String, Format, Parameter#1 [, Parameter#2...])

 Arguments and Return value
Parameter Explanation

String A string expression to scan.

Format, A string expression specifying format to scan.

A
rgum

ents

Parameter
A variable to which the converted value is set according
to a parameter descriptor.

Return value If the string matches the specified format, the function
returns true value (-1). If not, it returns false value (0).

 Example
ws$="year:2003 month:4" 'String to scan
If ScanStr(ws$, "year:%d month:%d", para1%, para2%) Then
 If para1% <= 2000 Then
 century%=20
 Else
 century%=21
 EndIf
EndIf

 Explanation
♦ Scanning String is executed to compare with Format. When a

parameter descriptor is found in Format, the value is extracted
from String and set to a parameter variable.

♦ The character that cannot be converted by a parameter descriptor
is detected, ScanStr function exits and returns false value (0)
immediately. If String matches Format, the function returns true
value (-1).

Example)
 w$=”para:xyz”
 a%=ScanStr(w$, “para:%d”, p1%) ‘a% is false(0).

♦ Comparison between String and Format distinguishes uppercase
and lowercase of a character.

Example)
 w$ = ”x:4 y:10”

a1% = ScanStr(w$, “x:%d y:%d” p1%, p2%) ‘a% is false(0).
a2% = ScanStr(w$, “X:%d Y:%d” p1%, p2%) ‘a2% is true(-1).

♦ If String is longer than Format, String is scanned with the length
of Format.

Example)
w$=”year:2003 month:4”

9 Commands

9-139

a%=ScanStr(w$, “year:%d” p1%) ‘a% is true(-1).
♦ If String is shorter than Format, the function always returns false

value (0).
Example)

w$=”year:2003”
a%=ScanStr(w$, “year%:%d month:%d” p1%) ‘a% is false(0).

♦ In Format, a string started by “%” and terminated by an alphabet
is regarded as a parameter descriptor. If a parameter descriptor is
found in the format, a string at the position of String, where the
descriptor indicates, is converted to the value. Then the value is set
to the corresponded parameter variable.

 The following descriptors are supported.
Descriptor Function Example
%[N]d
or
%[N]D

Scanned string is converted to set as
a decimal number.
N specifies the number of input
characters. If N omitted, the string
is scanned until an invalid character
for conversion appears.
The sequential space or tab at the
top of the string is passed to input,
but the scanning count increases.

• “01234” scanned
 Descriptor Converted
 "%2d" 1
 "%4d" 123
 "%d" 1234
• “-01234” scanned
 Descriptor Converted
 "%2d" 0
 "%4d" -12
 "%d" -1234
• “ 1234” scanned
 Descriptor Converted
 "%2d" 1
 "%4d" 123
 "%d" 1234
• “+01234” scanned
 Descriptor Converted
 "%2d" 0
 "%4d" 12
 "%d" 1234

%[N]x
or
%[N]X

Scanned string is converted to set as
a hexadecimal number without
character cases.
N specifies the number of input
characters. If N omitted, the string
is scanned until an invalid character
for conversion appears.
The sequential space or tab at the
top of the string is passed to input,
but the scanning count increases.

• “FF012345” scanned
 Descriptor Converted
 "%2x" &HFF
 "%4x" &HFF01
 "%x" &HFF012345
• “abcd1234” scanned
 Descriptor Converted
 "%2x" &HAB
 "%4x" &HABCD
 "%x" &HABCD1234
• “ ABCD” scanned
 Descriptor Converted
 "%2x" &HA
 "%4x" &HABC
 "%x" &HABCD

9 Commands

9-140

Descriptor Function Example
%[N]f
or
%[N]F

Scanned string is converted to set as
a real number.
N specifies the number of input
characters. If N omitted, the string
is scanned until an invalid character
for conversion appears.
The sequential space or tab at the
top of the string is passed to input,
but the scanning count increases.

• “1234.567” scanned
 Descriptor Converted
 "%2f" 12.0
 "%5f" 1234.5
 "%f" 1234.567
• “-1234.567” scanned
 Descriptor Converted
 "%2f" -1.0
 "%5f" -1234.0
 "%f" -1234.567
• “ 1.234” scanned
 Descriptor Converted
 "%2f" 1.0
 "%5f" 1.23
 "%f" 1.234
• “+1.234” scanned
 Descriptor Converted
 "%2f" 1.0
 "%5f" 1.23
 "%f" 1.234

%[N]s
or
%[N]S

The string is scanned to set as a
string. A corresponded parameter
variable has to be string type.
The inputted string begins at the
character except space, tab or
carriage-return, and terminates at
the character before pace, tab or
carriage-return.
N specifies the number of input
characters. If N omitted, the all
scanned string is inputted.
When N specified, it is attempted to
input N characters of the string.
However, if the size of inputted
string is less than N, spaces are
added to the top of the inputted
string.

• “123456 AAAAAA” scanned
Descriptor Converted
"%s%s" "123456" "AAAAAA"
"%3s%3s" "123" "456"

• “ A B” scanned
"%s%s" "A" "B"
"%3s%3s" " A" " B"

♦ Maximum number of parameter descriptors and parameter

variables is 62.
♦ Descriptor except “s”, “S”

If the value type of a parameter descriptor differs from the type of
the corresponded variable, scanned and inputted characters are
converted properly matching the variable type. When the parameter
variable is string type, inputted characters are set to the variable
without conversion.
Example)

w$ = “example:12.34”
ScanStr(w$, “example:%2f”, para#) ‘ para#=12.0
ScanStr(w$, “example:%2f”, para%) ‘ para%=12
ScanStr(w$, “example:%2f”, para$) ‘ para$=”12”
ScanStr(w$, “example:%3f”, para$) ‘ para$=”12.”

♦ Descriptor “s”, “S”

9 Commands

9-141

The corresponded parameter variable has to be a string type. If not
string type, a job error occurs when executed.

♦ "%%" has to be described in a parameter descriptor to output “%” as
a character.

♦ If the number of parameter descriptors differs from the number of
parameter variables, the statement is executed as follows.
• the number of parameter descriptors < the number of

parameter variables
No error occurs when a program compiled or runs. Unused
variables are never referred.

• the number of parameter descriptors > the number of
parameter variables
No error occurs when a program compiled, but a job error
occurs when a program runs.

 See also PrintStr.

9 Commands

9-142

Select Case (Statement)

 Function
Selects a procedure block evaluating the specified expression.

 Format
Select Case Test-expression
Case Expression-list#1
 Statements-block#1
Case Expression-list#2
 Statements-block#2
 :
Case Else
 Statements-block#N
End Select

 Arguments
Parameter Explanation

Test-expression An expression to test for selection.

Expression-list
(1 to N-1)

An expression of value that Test-expression may
contains.
Specifying format and example is shown below.
● Number, Expression, String

 Example)
 Case 1, 3, 5, 7
 Case “ABC”, “DEF”

● Expression#1 To Expression#2
Specify the range from Expression#1 to Expression#2
by a number, numeric expression or string.
 Example)
 Case 1 To 5
 Case “FMT” To “HIT”

● Is Relational-perator Expression
”=”, “<>”, “<”, “<=”, “>”, “>=” are available for
Relational-perator. Expression is a number, numeric
expression or string.
 Example)
 Case Is = 5
 Case Is <> 5
 Case Is < 5
 Case Is <= 5
 Case Is > 5
 Case Is >= 5

Expression-list can contain the combination of above
formats with a delimiter comma.

Statements
-block(1 to N-1)

A block of statements that is executed when
Expression-list becomes true.

Statements
-block(N)

A block of statements that is executed when all
Expression-list (1 to N-1) becomes false.

9 Commands

9-143

 Example
♦ Example#1

Select Case a%*2
Case 10, 12, 20 to 100, Is <=200 ‘ Case#1
 ‘ If (a%*2) is one of 10, 12, 20 to 100, 200 or less,
 ‘ <Statement block #1> is executed.
 <Statement block #1>
Case 250, n% ‘ Case#2
 ‘ If (a%*2) is 250 or n%,
 ‘ <Statement block #2> is executed.
 <Statement block #2>
Case Else
 ‘ If both Case#1 and Case#2 are false,
 ‘ <Statement block #3> is executed.
 <Statement block #3>
End Select

♦ Example#2
Select Case a$
Case “ABC”, “FG” to b$, Is < “ZZZ”
 ‘ If a$ is one of “ABC”, “FG” to b$, less than “ZZZ”,
 ‘ <Statement block #1> is executed.
 <Statement block #1>
Case c$+b$
 ‘ If a$ is (c$+b$),
 ‘ <Statement block #2> is executed.
 <Statement block #2>
Case Else
 ‘ If both Case#1 and Case#2 are false, do nothing.
End Select

 Explanation
♦ Select Case statement always needs Case Else and End Select.
♦ If one of conditions in Expression-list is true, the statement block is

executed.
♦ Any sentences or statements including Select Case statement can

be described in Statements-block. A program jumps to the next of
End Select after Statements-block has been executed.
Statements-block can be omitted.

♦ Maximum number of Select Case nestsi is 8.
♦ Maximum number of Case and Case Else statements is 127 in one

Select Case - End Select.
♦ Select Case, Case Else and End Select statement are not compiled

to executable code.

i Nest : means a structure located in the same structure.

9 Commands

9-144

Seq - SeqEnd (Statement)

 Function
Starts and terminates robot sequence mode.

 Foramt
Seq #File-number[[rno:Robot-number]]
 :
SeqEnd #File-number [[rno:Robot-number]]

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

 Example
Seq #1[rno:1]
 Move #1[rno:1], PM(PM.PLACE)
 ' Confirm a work does not exist.
 Wait INB(I.WORK)=0
 Finish #1[rno:1]
SeqEnd #1[rno:1]

 Explanation
♦ When Move statement is executed in Seq-SeqEnd block, starting

motion, Move returns immediately without positioning check.
♦ After the motion by Move statement, Z axis does not moves down in

Seq-SeqEnd block. As the following figure, Move statement in
Seq-SeqEnd block moves a robot to A->B->C, and then finally a
robot stops at the point C. After Finish statement is executed, Z
axis moves down toward the point D.

A

CB

D A

CB

DA

CB

D
Move executed Finish executred

Standard Move Move in Seq-SeqEnd block

If Finish statement is executed before a robot reaches the point C, a
robot moves to the point D without stopping at the point C.
In the following example, Z zone signal triggers to execute Finish.
Example)

Seq #1[rno:1]
 Move #1[rno:1], PM(PM.PLACE)

9 Commands

9-145

 : ‘ Procedure during the section (a)
 : ‘ before Z zone becomes ON.
 Wait (Ref(#1[rno:1], STATUS9) and &H)=1
 : ‘ Procedure after Z zone becomes OFF.
 : ‘ If a robot reaches the posit C before this procedure,
 : ‘ a robot stops without moving Z axis down.
 Finish #1[rno:1] ‘ Moves Z down
 Wait (Ref(#1[rno:1], STATUS9) and &H1)=0
 : ‘ Procedure during the section (b)
 : ‘ after Z zone becomes OFF.
 ’ Motion completed.
 Wait (Ref(#1[rno:1], STATUS9) and &H2)=2
SeqEnd #1[rno:1]

A E

C: Z axis moves down after
Finish statement.

ド受信後下降

B: Z zone signal ON

D: Z zone signal OFF (a) (b)

♦ In case that Z axis does not move, Finish statement is needed in

Seq-SeqEnd block after Move statement.
♦ It is not allowed that a program jumps into or out of Seq-SeqEnd

block using branch statement such as GoTo.
♦ Nest of Seq-SeqEnd is not allowed.

9 Commands

9-146

Set (Statement)

 Function
Sets motion parameters to a robot.

 Format
SET #File-number[[rno:Robot-number]] , Motion-parameter

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

Robot-number

A station number of a virtual robot. Valid number is 1
through 999. See chapter 8 about the robot number. It
can be specified as a number or variable.
If the robot number is omitted, the number registered by
SetRobNo function is used as the current robot number.

Motion-
parameter

Sub-command to set a robot motion parameter. The
following sub-commands are supported.
See “Explanation” about each sub-command.

(1) Speed for PTP motion
(2) Speed for CPC motion
(3) Acceleration and deceleration for PTP motion
(4) Acceleration and deceleration for CPC motion
(5) Pull-up of Z axis
(6) Arch motion data
(7) Slow-up motion data
(8) Insert motion data

 Example
Set #1[rno:2], Speed=100

 Explanation
(1) Speed for PTP motion

• Format#1 : Speed=All-axes-value
• Format#2 : Speed=(XYW-axes-value, Z-axes-value)
• Range : 0 to 100
• Precision : 1 %
• Default : 100

Specify speed of all motion except CPC during ONLINE mode. The
maximum speed varies according to the robot type. Specify the ratio
of the maximum speed from zero (minimum speed) through 100
(maximum speed). Refer to “13.1.2 AXIS SPEED” in operation
manual of a robot controller.

(2) Speed for CPC motion
• Format : Line Speed=Value
• Range : 0 to 999
• Precision : 1 mm/sec
• Default : 100

Specify CPC motion speed.
The head speed is related to “Line Speed” and F code of motion start.

9 Commands

9-147

Head speed = ”Line Speed” * (mm/sec)
1+Fcode

100
The maximum speed varies according to the robot type. If the value
exceeding the maximum is set, a robot moves within the maximum
speed.
Refer to “13.1.3 CPC CONSTANT” -> “CPC SPEED” in operation
manual of a robot controller.

(3) Acceleration and deceleration for PTP motion
• Format#1 : Accel=All-axes-value
• Format#2 : Accel=(XYW-axes-value, Z-axes-value)
• Range : 0 to 100
• Precision : 1 %
• Default : 80

Specify ratio of acceleration and deceleration for PTP motion.
In standard usage, the value of 70 through 100 has to be specified. If
the smaller value is set, acceleration and deceleration becomes
slower.
Refer to “13.2.1 ACCEL” in operation manual of a robot controller.

(4) Acceleration and deceleration for CPC motion
• Format : CP Accel=Value
• Range : 0 to 100
• Precision : 1 %
• Default : 80

Specify ratio of acceleration and deceleration for CPC motion.
Refer to “13.1.3 CPC CONSTANT” -> “CPC ACCEL/DECEL” in
operation manual of a robot controller.

(5) Pull-up of Z axis
• Format : Pull Up=Value
• Range : 5.0 to Z area limit
• Precision : 0.001 mm
• Default : 10.0

Specify Z upper position of auto pull-up.

“PULL-UP”

Work
A

B C

D

Z-axis origin

Refer to “13.1.1 MOTION” -> “PULL-UP” in operation manual of a
robot controller.

(6) Arch motion data
• Format : Arch=(Arch-up-value, Arch-down-value)
• Range : 0.0 to Z area limit
• Precision : 0.001 mm
• Default : 0.0

Arch-up-value is the distance of arch-up motion, which is the length
from the position of Z-axis origin.

9 Commands

9-148

“PULL-UP”

Work

“ARCH UP”
 mm

Z-axis origin

Arch-down-value is the distance of arch-down motion, which is the
length from the position of Z-axis origin.

Work

“PULL-UP”
Z-axis origin

“ARCH DOWN”

mm

Refer to “13.1.1 MOTION” -> “ARCH UP”, “ARCH DOWN” in
operation manual of a robot controller.

(7) Slow-up motion data
• Format : Slowup=(Distance-value, Speed-value)
• Range : Distance-value 0.0 to Z area limit
• Speed-value 0 to 99
• Precision : Distance-value 0.001 mm
• Speed-value 1 %
• Default : Distance-value 20.0
• Speed-value 20

Distance-value is the distance of slow-up motion, where Z-axis
moves by low speed after Z-axis starts.
Speed-value is Z-axis speed during slow-up motion.

Distance-value

-axis up
Z-axis moves
slowly.

Refer to “13.1.1 MOTION” -> “UP DIS”, “UP SPEED” in operation
manual of a robot controller.

(8) Insert motion data
• Format : Slowdown=(Distance-value, Speed-value)
• Range : Distance-value 0.0 to Z area limit
• Speed-value 0 to 99
• Precision : Distance-value 0.001 mm
• Speed-value 1 %
• Default : Distance-value 20.0
• Speed-value 20

Distance-value is the distance of slow-down motion. Z-axis
decelerates from the position of the Z-axis destination minus
Distance-value.

9 Commands

9-149

Speed-value is Z-axis speed during slow-down motion.

Distance-value

Z-axis down

Z-axis moves slowly.

Z-axis destination

Refer to “13.1.1 MOTION” -> “INS DIS”, “INS SPEED” in operation
manual of a robot controller.

 Refer to operation manual of a robot controller.

9 Commands

9-150

SetPriority (Function)

 Function
Set and change the priority of a job and returns the old priority.

 Format
SetPriority(Job-name, Priority)

 Arguments and Return value
Parameter Explanation

Job-name String type expression of a job name. Arguments Priority Numeric expression of the new job priority.
Return value The old job priority.

 Example
old.priority% = SetPriority(“robot1”, 10)

 Explanation
♦ The priority of a job has the level as 1 (the lowest) to 10 (the

highest). After STP system starts or a program is downloaded, the
priority of each job is set as 1 and each job runs equally.

♦ The priority of a job means as follows.
Among jobs with the priority 1, if you increase the priority of one job
to 10, this job can run 10 steps during other jobs running 1 step. In
the same way, if the priority ratio of 4 jobs has changed to 10:8:6:4,
the executing step ratio changes to 5:4:3:2. If the all priorities have
the same number (for example 10: 10:10), each job runs equally since
the executing step ratio is flat as 1: 1:1:

♦ If the specified job is not found, a job error occurs.

 See also GetPriority.

9 Commands

9-151

SetRobNo (Function)

 Function
Sets a robot number for the robot communication of a current job.

 Format
SetRobNo(Robot-number)

 Argument and Return value
Parameter Explanation

Argument Robot-
number

Numeric expression specifying a robot number of
a current job from 1 through 999.

Return value Nothing

 Example
SetRobNo(1)

 Explanation
♦ SetRobNo function sets a robot number of a current job, which is

used for the robot communication. After SetRobNo function is
executed, a job program can omit specifying a robot number when a
robot control command such as Move, Set, Ref and so on.

♦ Robot-number must be specified by the value that is set to
[MAINTENANCE]-[MAINTENANCE DATA]-[STATION NO.] in
S.G. data of the controller. In HNC-590 series, HAX-8XX controller,
default number 1, 2, 3, 4 is assigned to four virtual robots.

♦ After STP system starts, a program is downloaded or ClearRobNo
function is executed, robot number of a job is set by the value -1.

♦ If Robot-number is specified by a constant, a compiling error occurs
when the specified value is out of 1 through 999.

♦ If Robot-number is specified by a variable, a job error occurs when
the specified value is out of 1 through 999.

 See also GetRobNo, ClearRobNo.

9 Commands

9-152

Sgn (Function)

 Function
Gets the sign of a number.

 Format
Sgn(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

A numeric expression specifying a number.

Return value

The function returns the following integer
value to check the number.
 Number < 0 -1
 Number = 0 0
 Number > 0 1

 Example
b% = Sgn(-10.34) ‘ -1 is substituted for b%.

9 Commands

9-153

Sin (Function)

 Function
Gets the value of sine.

 Format
Sin(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Angle by radian.

Return value Sine of the specified value is returned. The
value is from -1.0 through +1.0.

 Example
angle! = Pai / 3
x! = Sin(angle!)

 Explanation
The ratio of “B” to “A” is returned specifying the angle “Angle” in the
figure.

A
BAngleSin =)(B

A

Angle

 See also Atn, Cos, Tan.

9 Commands

9-154

Space$ (Function)

 Function
Gets a string containing serial space characters.

 Format
Space$(Length)

 Argument and Return value
Parameter Explanation

Argument Length A numeric expression specifying the length of
serial spaces. Valid range is from 0 through 255.

Return value Serial space characters (code:&H20) with the
specified length.

 Example
a$=”Manual”
b$=a$+Space$(2)+”ABC” ‘ ”Manual ABC” is substituted for b$.

 Explanation
A null string is returned if Length is zero.

9 Commands

9-155

Sqr (Function)

 Function
Gets the square root of a number.

 Format
Sqr(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Numeric expression specifying a number.

Return value The square root of the specified value.

 Example
a! = Sqr(x!*x! + y!*y!)

9 Commands

9-156

Str$ (Function)

 Function
Converts a number to a string.

 Format
Str$(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Numeric expression specifying a number.

Return value A converted string.

 Example
num1!=10.2 : num2%=－12
a$=Str$(num1!)+”ABC” ‘ ” 10.2ABC” is substituted for a$.
b$=Str$(num2%)+”ABC” ‘ ”-12ABC” is substituted for b$.

 Explanation
The first character of the returned string is a sign character of a number.
In case of minus number, it is a minus character (-). In case of plus
number, it is a space character.

9 Commands

9-157

String$ (Function)

 Function
Gets a repeating character string of the specified length.

 Format
String$(Length, String-expression)
String$(Length, Character-code)

 Arguments and Return value
Parameter Explanation

Length A numeric expression specifying the length of
the returned string.

String-
expression

A string expression in which the first character
is repeated. Arguments

Character-
code

A numeric expression specifying a repeating
character code. Valid value is from 0 through
255 (&HFF).

Return value A string repeating the specified character.

 Example
a$=String$(3, “#”) ‘ ”###” is substituted for a$.
b$=String$(4, &H40) ‘ ”@@@@” is substituted for b$.
c$=String$(5, “HrBasic) ‘ ”HHHHH” is substituted for c$.

 Explanation
In case of String-expression, the first character of the specified string is
repeated.

9 Commands

9-158

Tan (Function)

 Function
Gets the value of tangent.

 Format
Tan(Numeric-expression)

 Argument and Return value
Parameter Explanation

Argument Numeric-
expression

Angle by radian.

Return value Tangent of the specified value is returned.

 Example
angle! = Pai / 4
a! = Tan(angle!)

 Explanation
The ratio of “B” to “A” is returned specifying the angle “Angle” in the
figure.

A
BAngleTan =)(A

B
Angle

 See also Atn, Cos, Sin.

9 Commands

9-159

Time$ (Statement)

 Function
Sets time to the system calendar.

 Format
Time$ = Time-String

 Argument
Parameter Explanation

Argument Nothing

 Example
Time$=”13:10:00” ‘ Set 13:00:00 to system calendar.

 Explanation

♦ This statement is used at the left side of substitution.
♦ The substituted string of a constant or variable has to be the

following format.
 “hh:mm:ss”

Hour (00 to 23)
Minute(00 to 59)
Second(00 to 59)

 See also Date$, Time$ (function).

9 Commands

9-160

Time$ (Function)

 Function
Gets current time of the system calendar.

 Format
Time$

 Argument and Return value
Parameter Explanation

Argument Nothing

Return value
A sting that contains current time with the following
format.
 ”hh:mm:ss”

 Example
b$ = Time$ ‘ Current time is substituted for b$.

 Explanation
The value of Time$ is a string data, but it is not available in the string
expression combined with string operators. For example, a$=Date$+b$ is
not available. In this case, a program has to be described as follows.
t$ = Time$
a$ = t$ + b$

 See also Date$, Time$ (statement).

9 Commands

9-161

TimeOut (Function)

 Function
Gets the timeout state after the execution of Wait statement.

 Format
TimeOut

 Return value
Parameter Explanation

Return value

A logical value whether the last Wait statement has
resulted in timeout.
Timeout: true (-1)
Not timeout: false (0)

 Example
Wait INB(I.BUTTON)=1, 3.0 ‘ Wait for button ON for 3.0 seconds.
If TimeOut Then GoTo *TOUT.ERR ‘ Timeout

 Explanation
♦ The function returns the timeout state by a logical value after the

last Wait statement has been executed. The timeout state is held
until the next Wait statement is executed.

♦ The timeout state is kept for each job.
♦ Initial value of TimeOut function is zero (false value).

 See also Wait.

9 Commands

9-162

Val (Function)

 Function
Converts a string to a number.

 Format
Val(String-expression)

 Argument and Return value
Parameter Explanation

Argument String-
expression

A string expression specifying a number. A
decimal, hexadecimal or real expression is
available, but Octal expression is not available.

Return value Value to which the specified string is converted.

 Example
a% = Val(“123”) ‘ 123 is substituted for a%.
b# = Val(“&HFF”) ‘ 255.0 is substituted for b#.
c% = Val(“&H F”) ‘ 15 is substituted for c%
d& = Val(“AB”) ‘ Zero is substituted for d&

 Explanation
♦ If the first character of String-expression is not ‘+’, ‘-‘, ‘&’ or

numeral, the function returns zero.
♦ If it is detected that the character is not numeric during scanning

the string, the rest of characters is neglected. In case of
hexadecimal string, a character of ‘A’ to ‘F’ is regarded as
numerical.

♦ Space (&H20) in the string is neglected to scan.

 See also Str$.

9 Commands

9-163

Wait (Statement)

 Function
Waits at its step until the specified condition is satisfied, or until the
specified time passes.

 Format
Wait Condition [, Time]

 Argument
Parameter Explanation

Condition A conditional expression resulting in the logical value,
true (-1) or false (0).

Time

The statement waits until this time passes. Specify a
numeric expression containing time value with the
precision of 0.001 sec. Available range is from 0 through
2147483.647 sec.

 Example
Wait INB(3)=0, 8 ‘ Wait for INB(3) OFF for 8 seconds.

 Explanation
♦ If the result of Condition is true (-1), Wait statement returns

immediately and then the next program step is executed. If the
result of Condition is false (0), Wait statement waits until it
becomes true (-1).

♦ Wait statement exits after Time passes even if the result of
Condition is false. After this case, TimeOut function returns a true
value (-1). The following program check whether the last Wait
statement has exited by timeout.

If TimeOut Then GoTo *T.OUT ‘ Wait timeout
♦ If Time is omitted, Wait statement waits infinitely until Condition

is satisfied.
♦ Wait statement does not affect other job.
♦ After a job is stopped by Job Off during waiting by Wait statement,

Job Start restarts a job to execute Wait statement still. However,
countdown of Wait timer is executed during the state of Job Off.

 See also TimeOut.

9 Commands

9-164

WriteHrcs (Statement)

 Function
Writes the specified string by HRCS protocol.

 Format
WriteHrcs #File-number, String

 Arguments
Parameter Explanation

File-number

A file number corresponded to the communication port
must be specified. Valid range is from 0 through 47.
In case of variable, "#" can be omitted but in case of a
numeral constant, it cannot be omitted.

String A string of TEXT part in a HRCS protocol frame to send.

 Example
a$=”HrBasic Manual”
WriteHrcs #1, a$

 Explanation
A HRCS protocol frame is shown below.
WriteHrcs statement sets the specified string to TEXT part in the figure
and then sends a HRCS protocol frame.

STX TEXT ETX
 LRC

• STX (Start of Text)
The head of HRCS protocol frame. (&H02)

• ETX (End of Text)
The end of HRCS protocol frame. (&H03)

• LRC (Longitudinal Redundancy Check)
LRCi is a check code for communication data calculated by exclusive
OR of bytes in TEXT to ETX.

◆ See also RchkHrcs, WriteHrcs.

i See “Appendix B LRC Calculation”.

9 Commands

9-165

Xor (Operator)

 Function
Executes a logical exclusion of two numbers.

 Format
Numeric-expression#1 Xor Numeric-expression #2

 Arguments
Parameter Explanation

Numeric-expression#1 A numeric expression.
Numeric-expression#2 A numeric expression.

 Example
a% = &H00FF%
b% = &H0F0F%
c% = a% Xor b% ‘ &H0FF0% substituted for c%.

 Explanation

• The following calculation is performed.
 X Y X xor Y

1 1 0
1 0 1
0 1 1
0 0 0

• See “6.4.3 Logical Operator”.

Appendix

Appendix-1

 Appendix

Appendix-A ASCII Codes
 Upper 4 bits

Hex 0 1 2 3 4 5 6 7

0 NUL DEL SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF BUS * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L ¥ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

Lo
w

er
 4

 b
its

F SI US / ? O _ o DEL

For example, the code of “A” is &H42 as hexadecimal expression.

Appendix

Appendix-2

Appendix-B LRC Caluculation
How to calculate LRC(Longitudinal Redundancy Check) is described below.

(1) LRC calculation area
LRC is made by excusive-or operation of all bytes from the next byte of
STX through ETX.

< Example of a HRCS protocol frame >

STX 31H 32H 33H 34H 35H 36H 37H 38H ETX LRC

Calculation area of LRC

TEXT

(2) LRC calculation

• A unit of calculation is each byte of communication data.
• Calculate exclusive-or (XOR)i of the first byte and the second byte

in TEXT and the symbol, X1 represents the result.
• Calculate XOR of X1 and the third byte in TEXT and the X2

represents the result.
• Calculate XOR of all TEXT bytes similarly, and finally, LRC is

calculated by XOR of the result and ETX.
< LRC calculation of HRCS protocol frame example >

ASCII
TEXT

Hex Binary XOR

1 31H 00110001
2 32H 00110010 00000011 X1
3 33H 00110011 00110000 X2
4 34H 00110100 00000100 X3
5 35H 00110101 00110001 X4
6 36H 00110110 00000111 X4
7 37H 00110111 00110000 X5
8 38H 00111000 00001000 X6

ETX 03H 00000011 00001011 LRC

i Truth table of XOR --- A XOR B = C

A B C
0 0 0
0 1 1
1 0 1
1 1 0

Appendix

Appendix-3

Appendix-C Compiling Errors
Code
(Dec)

Code
(Hex)

Error message Explanation

0 00 Syntax error Invalid character or keyword is used, or
sequence of command or parameter is illegal.

1 01 Division by Zero A number is divided by the constant zero.
2 02 Duplicate label The same label is defined two times or more.
3 03 FOR without NEXT For statement is described, but Next

statement is not found.
4 04 Illegal function call Number of arguments is illegal, or the type of

argument is invalid.
5 05 Line buffer overflow Divide a program described in one line.
6 06 NEXT without FOR Next statement is described, but For

statement is not found.
7 07 Out of memory Variables, labels or subroutines are too much.

Make a program more structured, for
example, using subroutines.

8 08 IF formula too complex A condition expression of If statement is too
complex. For example, calculate the condition
in advance.

9 09 Overflow Value of the specified number is out of valid
range.

10 0A RETURN without GOSUB Return statement is not found in a subroutine.
11 0B String formula too complex Divide a calculating expression.
12 0C String too long Reduce the number of characters in a string.
13 0D Subscript out of range The specified subscript of array exceeds the

limit defined by declaration.
14 0E Type mismatch Type combination of the left side and the right

side are invalid.
15 0F Undefined label The specified label is not defined in a job.
16 10 Undefined line number (Unused)
17 11 Duplicate variable Reserved memory is specified to Dim, Global,

DimNet statement, or the same variable name
is specified to Global and DimNet statement.

18 12 Variable name too long Length of a variable name exceeds the
maximum.

19 13 Label name too long Length of a label name exceeds the maximum.
20 14 FOR statement missing (Unused)
21 15 IF statement missing Description of a If...Then...Else...EndIf

sentence is invalid.
22 16 Misplace ELSE An Else sentence is described independently.
23 17 GOTO statement missing

label
Unexpected error occurs in a GoTo sentence.

24 18 Too much code defined in file (Unused)
25 19 Too much code defined in line Compiled intermediate code of one line

exceeds the maximum volume. Divide a
program of the line.

26 1A Duplicate Definition The same name of array variable is defined
two times or more.

27 1B Too much dimension number The number of array dimensions has to be one
through three.

28 1C Constant expression required Array dimension has be specified by a
constant.

Appendix

Appendix-4

Code
(Dec)

Code
(Hex)

Error message Explanation

29 1D Undefined JOBNAME
statement

Job name statement is not found in a job.

30 1E Illegal octal digit An invalid character is found in an octal
expression. See “6.1.3 Integer Type Literal”.

31 1F Illegal hex digit An invalid character is found in a hexadecimal
expression. See “6.1.3 Integer Type Literal”.

32 20 Too many decimal points (Unused)
33 21 DIM statement missing The specified variable is not array.
34 22 Invalid indirection A variable that is not defined as array is used

in a program.
35 23 Invalid position number The specified position address is invalid.
36 24 EOF number out of range The specified file number for Eof function is

out of valid range.
37 25 Bad file mode (Unused)
38 26 File number out of range The specified file number is out of valid range.
39 27 DELAY statement missing The minus value is specified to an argument,

or the specified variable has the invalid type.
40 28 Port number out of range The specified COM port number is out of valid

range.
41 29 ERROR statement missing (Unused)
42 2A LINE INPUT statement

missing
An argument has to be a string variable.

43 2B MACRO statement missing The invalid syntax is found in a MACRO
sentence.

44 2C Not found INCLUDE file The header file or the header directory set in
HBDE does not exist.

45 2D Specified axis missing The number of specified axes is invalid.
46 2E MOVE statement missing The invalid syntax is found in a Move

sentence.
47 2F Position count mismatch Two positions or more are needed for Move

statement according to a motion type.
48 30 Illegal precious number The invalid syntax is found in the specified

precision in a Move sentence.
49 31 Option missing Invalid variable or memory is specified.
50 32 Component expression

missing
Invalid expression is found in axis data or arm
direction.

51 33 Duplicate SEQ statement (Unused)
52 34 SEQEND without SEQ SeqEnd statement is described, but Seq

statement is not found.
53 35 DRIVE statement missing (Unused)
54 36 JOG statement missing (Unused)
55 37 OPEN statement missing The invalid format of the specified

communication parameter or the invalid
syntax is founded in an Open sentence.

56 38 Out of range in numeric
constant

Value of the specified numeric constant is out
of valid range.

57 39 SEQ without SEQEND Seq statement is described, but SeqEnd
statement is not found.

58 3A WHILE without WEND (Unused)
59 3B WEND without WHILE (Unused)
60 3C Not enough memory (Unused)

Appendix

Appendix-5

Code
(Dec)

Code
(Hex)

Error message Explanation

61 3D DEFINE statement missing The invalid description of an argument is
found in a Define sentence.

62 3E Duplicate JOB NAME The same job name is used in the different job
programs.

63 3F Undefined JOB NAME A job with the specified job name is not found
in the linked program.

64 40 Bad object file Invalid contents of an object file (.obj) are
found on compilation or linking. There is a
possibility that the file is destroyed.

65 41 Bad label file (Unused)
66 42 Bad local variables file Invalid contents of a local variable file (.var)

are found on compilation or linking. There is a
possibility that the file is destroyed.

67 43 Bad global variables file Invalid contents of a global variable file (.gbl)
are found on compilation or linking. There is a
possibility that the file is destroyed.

68 44 More than 32 jobs defined The number of linked jobs exceeds the
maximum.

69 45 Too many global variables The number of all global variables exceeds the
maximum.

70 46 Bad make file Invalid contents are found in a make file.
There is a possibility that the file is destroyed.

71 47 ENDIF without IF If...EndIf combination is incorrect in a job
program.

72 48 SELECT CASE nesting over The number of Select Case nests exceeds the
maximum. Extract the program in a Case
block as a subroutine to be more structured.

73 49 SELECT CASE statement
missing

Case, Case Else, End Select statement is
described, but Select Case statement is not
found.

74 4A IS operator is not tail Is operator in Case statement has to be
described the tail of the sentence.

75 4B CASE ELSE statement
missing

Case Else statement has to be described even
if there is no procedure for it.

76 4C END SELECT statement
missing

End Select statement is needed after a Case
Else block to terminate a Select Case block.

77 4D Sequence error in SELECT
CASE block

Procedure in a Select Case block is too
complex. It has to be simpler structure by
means of structured programming using
subroutines.

78 4E CASE statements more than
127

Reduce the number of Case sentences to
integrate several conditions to one Case
sentence.

79 4F Statement between SELECT
CASE and CASE

There has not to be an executable sentence
between Select Case and Case statement.

80 50 WAIT expression not logical The condition expression in Wait sentence is
not logical expression.

81 51 Illegal assignment A value has not to be substituted for HERE,
STATUS.

82 52 Illegal robot type Invalid value is specified to RobType
command.

83 53 Bad argument type of
function or statement

The type of the specified constant or variable
is not allowed for the function or statement.

84 54 Illegal value of argument Value of the specified constant for the function
or statement is out of valid range.

Appendix

Appendix-6

Code
(Dec)

Code
(Hex)

Error message Explanation

85 55 Conditions of CASE
statement too long

Condition expression is too long in a Case
sentence. Calculate the condition in advance,
or divide the condition to multiple Case
sentences.

86 56 Path name not character
string type

The argument specifying a file path name is
not string type.

87 57 Parameter not character
string type

The argument specifying the parameter is not
string type.

88 58 Illegal type of file number Number type of the specified file number is
not integer.

89 59 Invalid COM port number The specified COM port number is out of valid
range.

90 5A Arm,Local,F,M,S cannot be
specified

Arm direction, coordinate type, M-data,
F-code, S-code cannot be described to a
component expression of position data.

91 5B One of Local,F,M,S cannot be
omitted

All of coordinate type, M-data, F-code, S-code
have to be described to a component
expression of position data.

92 5C Axis data, Arm cannot be
omitted

Axis value or arm direction cannot be omitted
in a component expression of position data.

93 5D Variable that is not a position
is specified

Only position data can be specified to an
argument of the function or statement.

94 5E Too many robots in the list The number of robots specified to RobNoList
command exceeds the maximum.

95 5F Invalid robot number The specified robot number is out of valid
range.

96 60 Illegal type of robot number The type of the specified robot number is not
integer.

97 61 Robot number duplicated A robot number specified in RobNoList
command is duplicated.

98 62 Real number specified in
integer constant

In a constant, the value is real type though
type declaration is integer.

99 63 The right side is out of range
for the left side

In substitution, the substituted value is out of
valid range for the left side.

100 64 Only available string variable
or constant

Only a string constant or variable can be
specified to a argument of the function or
statement.

101 65 Timer value is out of range The value set to a timer is out of valid range.
102 66 Too many arguments of

function
The number of arguments for the function
exceeds the maximum.

103 67 Only string variable available Only a string variable can be specified to a
argument of the function or statement.

104 68 Cannot use the function
without return value

The function that returns nothing cannot be
described here.

105 69 Only user variable can be
specified for argument of
function

Only a variable can be specified to a output
argument in the function. A constant cannot
be specified.

106 6A Too many axes for arguments The number of specified axes for the function
or statement exceeds the maximum.

107 6B Bad usage of operator The described operator cannot be used here.
108 6C Nests of FOR-NEXT overflow The number of For-Next nests exceeds the

maximum. Extract the program in a For-Next
block as a subroutine to be more structured.

Appendix

Appendix-7

Code
(Dec)

Code
(Hex)

Error message Explanation

109 6D Nests of IF-ENDIF overflow The number of If-EndIf nests exceeds the
maximum. Extract the program in a If-EndIf
block as a subroutine to be more structured.

110 6E Nests of WHILE-WEND
overflow

The number of While-Wend nests exceeds the
maximum. Extract the program in a
While-Wend block as a subroutine to be more
structured.

111 6F Variable in NEXT not
matched to FOR

A variable in a Next sentence has be the same
as the corresponded For sentence.

112 70 Invalid character code
(including space or tab)

2-bytes code of a character is detected in a
executable sentence.

113 71 Relative position missing It is necessary to specify the relative position.
114 72 Only long integer variable

available
Only 32-bits long integer (&) can be specified.
A constant cannot be specified.

115 73 Invalid axis number The specified axis number is out of valid
range.

Appendix

Appendix-8

Appendix-D Running Job Errors
Code
(Dec)

Code
(Hex)

Error message Explanation

1 01 Illegal program pointer There may be OS (Operating System)
trouble.

2 02 Bus error exception STP: There may be OS trouble.
WinSTP: Unused

3 03 Address error exception STP: There may be OS trouble.
WinSTP: Unused

4 04 Illegal instruction exception STP: There may be OS trouble.
WinSTP: Unused

5 05 Zero divide exception STP: There may be OS trouble.
WinSTP: Unused

6 06 CHK instruction exception (Unused)
7 07 TRAPV instruction exception (Unused)
8 08 Privilege violation (Unused)
9 09 Format error (Unused)

10 0A Line 1010 emulator exception (Unused)
11 0B Line 1111 emulator exception (Unused)
12 0C (Unused) (Unused)
13 0D (Unused) (Unused)
14 0E Arithmetic co-processor exception (Unused)
15 0F Program not downloaded Download a program to STP.
16 10 Calculation overflow The result of calculation exceeds the

maximum value.
17 11 Divided by Zero Dividing a value by zero is executed.
18 12 RESUME without error Resume statement is available only after a

job error has occurred.
19 13 Written to out of area Out of variable memory area is accessed

when substitution. There is a possibility of
OS trouble.

20 14 Invalid internal data An unexpected internal error. For
example, invalid data is contained in the
memory that a program cannot access.
There is a possibility of OS trouble.

21 15 Array accessed out of range A subscript indicates out of the defined
area of the array.

22 16 Nests of FOR-NEXT overflow Extract the program in a For-Next block as
a subroutine to be more structured.

23 17 FOR and NEXT not a pair For or Next statement is not described.
24 18 Undefined command The command (function or statement) is

not supported at present.
25 19 RETURN without GOSUB GoSub or Return statement is not executed

as a pair. There is a possibility that a
program has jumped to a subroutine by
GoTo statement instead of GuSub.

26 1A Incorrect usage of command or
function

The followings cause the error.
Type of argument is invalid. The
parameter format specified to a function or
statement is invalid. A sentence has
incorrect syntax.

27 1B OPEN already executed Open statement is executed for the file or
communication port that is already
opened.

Appendix

Appendix-9

Code
(Dec)

Code
(Hex)

Error message Explanation

28 1C File accessed without OPEN The file or communication port that is not
opened is accessed.

29 1D Data nothing to receive (Unused)
30 1E Calculation underflow The result of calculation becomes less than

the minimum value.
31 1F Receiving buffer overflow (Unused)
32 20 Stack error at FOR-NEXT

execution
(Unused)

33 21 Character string expression too
complex

Divide a string expression to the smaller
ones.

34 22 Character string too long The string has to be treated as the smaller
ones.

35 23 Type of variable or data
mismatched

Invalid type of a variable or data is
specified.

36 24 Incorrect format command (Unused)
37 25 Cannot convert data type Automatic type conversion cannot be

executed. Check the combination of two
types of data.

38 26 Arithmetic co-processor error (Unused)
39 27 Data receiving (parity, overrun,

framing) error
The error occurs on RS232C
communication. There are possibilities of
communication speed inconsistency, noise,
or disconnection.

40 28 OPENed file already used Open statement is executed with the file
number that is already used.

41 29 Stack control error OS cannot manage the inner stack
correctly. There is a possibility of OS
trouble.

42 2A Nests of GOSUB-RETURN
overflow

GoSub or Return statement is not executed
as a pair. There is a possibility that a
program has returned to main program by
GoTo statement instead of Return.

43 2B COM line not connected On RS232C transmission, DSR signal
becomes OFF. Check the disconnection.

44 2C Sending buffer overflow (Unused)
45 2D JOB START without JOB OFF The specified job has to be Job Off state

before Job Start statement is executed.
46 2E Position memory access out of

range
(Unused)

47 2F Network already opened The already opened network is opened
without close.

48 30 Network open overflow The number of opened networks exceeds
the maximum.

49 31 Network not opened A network is accessed without open.
50 32 Network writing size error Writing size specified to NetWrite function

is out of valid range.
51 33 Network CR (Communication

Reference) undefined
Network definition is not created correctly.

52 34 Own station number specified Own station number is specified for the
network communication.

53 35 Specified COM port not
implemented.

The specified COM port is not available, or
not implemented.

Appendix

Appendix-10

Code
(Dec)

Code
(Hex)

Error message Explanation

54 36 Communication buffer overflow The sending buffer or the receiving buffer
is full. In case of sending, sending cycle of
a program is too fast. In case of receiving,
receiving cycle of a program is too slow.

55 37 Invalid baud rate for serial COM The specified value of RS232C
communication speed is invalid.

56 38 Invalid parity for serial COM The specified value of RS232C parity is
invalid.

57 39 Invalid character length for serial
COM

The specified value of RS232C character
length is invalid.

58 3A Invalid stop bits for serial COM The specified value of RS232C stop bits is
invalid.

59 3B No available file number All file numbers are used now. Reduce the
number of concurrently used files.

60 3C Specified COM port not available The specified COM port number is out of
valid range.

61 3D File number out of range The specified file number is out of valid
range.

62 3E Can not open COM port Setup of the specified COM port fails.
There is a possibility of hardware trouble.
In WinSTP, the PC COM port is not
available, so check the device.

63 3F Serial COM parameter format
error

The format of the specified RS232C
communication parameter is invalid.

64 40 No such file or directory The specified file or directory is not found.
65 41 File open error The specified storage file cannot be opened.
66 42 File write error The specified storage file cannot be

written.
67 43 File read error The specified storage file cannot be read.
68 44 Received HRCS data format error The format of a received HRCS protocol

frame is invalid.
69 45 Communication TxRDY off RS232C TxRDY signal becomes OFF

unexpectedly.
70 46 Communication RxRDY off RS232C RxRDY signal becomes OFF

unexpectedly.
71 47 System-call or API error In WinSTP, a Windows API (System-call)

error occurs.
72 48 Mode error in communication

hardware
In WinSTP communication, a hardware
mode error occurs.

73 49 General I/O error in
communication hardware

In WinSTP communication, a general I/O
error occurs.

74 4A Break status detected in
communication hardware

In WinSTP communication, the break
signal is detected.

75 4B Transmission timeout in
communication hardware

In WinSTP communication, a transmission
timeout occurs.

76 4C Other error of communication In communication, a miscellaneous error
occurs.

77 4D Re-open PROCON or HOST
failed

When closing a communication port,
re-setup of the hardware fails.

78 4E Specified file cannot
communicate

The specified file number is not for a
communication port.

79 4F Undefined error detected Undefined error about communication.
There is a possibility of OS trouble.

Appendix

Appendix-11

Code
(Dec)

Code
(Hex)

Error message Explanation

80 50 Communication timeout with the
robot

A robot does not respond.

81 51 Error received from the robot A robot responds an error.
82 52 Illegal response format of the

robot
The response format of the robot is illegal
or not supported by STP.

83 53 Data Not registered in the robot (Unused)
84 54 Not SEQ mode in the robot (Unused)
85 55 Too many robots for

communication
The number of robots that are concurrently
communicated with STP exceeds the
maximum.

86 56 Duplicated sending to robots A next communication command is sent to
a robot before the response.

87 57 Received position data invalid Invalid position data is received from a
robot.

88 58 Robot response without robot no. A robot number is not found in the
response from a robot that has to manage
the robot number.

89 59 Different robot no. in response The robot number received from a robot is
not same as the sent one.

90 5A Robot memory index out of range The specified index (subscript) of robot
memory is out of valid range.

91 5B Robot is not ONLINE mode Operation mode of the robot to
communicate is not ONLINE.

92 5C Robot motion stopped
incompletely

A robot stopped before it completes the
motion to the programmed position.

93 5D Robot axis no. error The specified axis number is out of valid
range.

94 5E Operands overflow In robot function or statement, the number
of specified arguments (operands) exceeds
the maximum.

95 5F Number of robot axes overflow In robot function or statement, the number
of specified axes exceeds the maximum.

96 60 OPEN in the through mode A communication port in Through Mode is
opened.

97 61 CLOSE in the through mode A communication port in Through Mode is
closed.

98 62 Sending data too long The size of sending data at one time
exceeds the maximum.

99 63 Minus value specified as a
parameter

Minus value is specified to an argument of
a robot function or statement.

100 64 Null string detected Null string is specified to a function or
statement.

101 65 Accessed out of string A function or statement for string
operation accesses the area out of the
string.

102 66 Invalid code specified A character code out of 0 to 255 is specified
to a function or statement for string
operation.

103 67 Cannot execute for current robot
type

For the controller specified by RobType,
the function or statement cannot be
executed.

104 68 Not available to write time or
date

In WinSTP, system date and time cannot
be written.

Appendix

Appendix-12

Code
(Dec)

Code
(Hex)

Error message Explanation

105 69 Format error of time or date The format to write system date or time is
invalid.

106 6A Bad robot no. in response from
robot

The format of the robot number received
from a robot is invalid.

107 6B Robot number out of range The specified robot number is out of valid
range.

108 6C Robot number duplicated The same robot number is registered two
times and more.

109 6D Robot number not found in OPEN
list

The specified robot number is not defined
by RobNoList of Open statement.

110 6E Specified job not downloaded The specified job has not been downloaded.
111 6F LRC error of HRCS protocol LRC error is detected onHRCS protocol

communication.
112 70 Too many arguments The number of the specified arguments

exceeds the maximum.
113 71 Invalid parameter descriptor The format of a parameter descriptor is

invalid.
114 72 Invalid type of argument Type of the specified argument of a

function or statement is invalid.
115 73 Parameter value out of range The value of parameter specified to a

function or statement is out of valid range.
116 74 Cannot execute when robot is

moving
The function or statement cannot be
executed when a robot is moving.

117 75 Invalid position data The content of position data is invalid.
118 76 Position data empty All elements of position data are zero.
119 77 M,F,S data all zero All M-data, S-code and F-code of position

data are zero.
120 78 Robot controlled by other job (Unused)
121 79 Number of FOR-NEXT overflow The number of all For-Next statements

exceeds the maximum.
122 7A MOVE executed without

ENABLE
Enable statement has to be executed
before Move statement.

123 7B Invalid job priority The value of the specified job priority is out
of valid range.

124 7C Specified job not found The specified job is not found in the
system.

125 7D Cannot execute on the current
platform

In the current platform (type of a
controller or STP), the function or
statement is not available.

126 7E Invalid data of robot collision
check

The downloaded data of robot collision
check is invalid.

127 7F Robot collision check data
overflow

Data overflow occurs on the setup of robot
collision check when Open or Close
statement is executed.

128 80 Safety length for robot collision
not defined

In the downloaded data of robot collision
check, safety length is not defined.

129 81 Internal function error of robot
collision

An unexpected error occurs in the internal
function of robot collision check.

130 82 Robot collision detected Robot collision is detected by the internal
function of robot collision check.

131 83 Local-World coordinates
conversion data not defined

In the downloaded data of robot collision
check, Local-World coordinates conversion
data is not defined.

Appendix

Appendix-13

Code
(Dec)

Code
(Hex)

Error message Explanation

132 84 Invalid specified robot number The specified robot number is not defined
in a robot controller.

133 85 SG/SP data group error The specified group name of SG/SP data is
incorrect.

134 86 SG/SP data invalid The specified value of SG/SP data is
invalid.

Appendix

Appendix-14

Appendix-E Standard Coding Rules
HrBasic can be programmed with a free coding style because it is based on
general-purpose programming language such as BASIC.
However, some rules of coding style are necessary for the following purpose.

• Easy maintenance of a program
Easy to read and understand a program
Easy to modify a program
Easy to debug a program

• High efficiency to develop a program
High portability of a program module

• High quality of a program
High portability of a program module
Easy to debug a program

A program with a completely free style decreases these easy-maintenance,
efficient-development and high-quality.
The HrBasic standard coding rules are shown below as the reference to your
coding style that will be created to fit the various developing environment and
the target system.

(1) Job

• One job has to be programmed in one source file.
• A job name has to be the same as the filename except suffix.
• A job name has to be simple and indicates the function of the job.
• Standard jobs programmed commonly are named as the followings.

System initialization: Init
Mode management: Mode
Manual operation: Manual
Error procedure: Error

Example)
Job Name “Init” Init.bas
Job Name “Robot” Robot.bas
Job Name “Mode” Mode.bas

(2) Job structure

• For the purpose of reusing a job program, the job structure has to be
hierarchical. The hierarchical structure realizes the software packaging
and the combination of the packaged programs can be applied to the
various systems easily.

• See “3.4 Job Structure” about detailes.

(3) Program structure in a job

• The following figure shows the standard structure of a job program.

Appendix

Appendix-15

• Job header

The function of a job, created date, version, revision and so on are
described by comments.
Example)
'**
' XXXX System
' Job Name: Init
' Function: Job initialization
' Author: XXXX
' Crated: 2004.1.15
' (R)(C) All rights reserved by HIRATA Corporation.
' Revisions:
' '04.08.24 XXXX YYYYYYY Ver0.85
'**

• Job Name
Job Name statement defines a job name and declares the top of a job
program.

• Declarations
Including header files, definition of global variables, definition of arrays
and so on are described.
Example)
'<<<< STP Position Memory >>>>
 DimPos 8000
'<<<< Include File >>>>
Include "Io.hed"
Include "Mb.hed"
Include "Robot.hed"
'<<<< Global Variables >>>>

Job header (comment)

Job Name “Job-name”

Declarations

Job initialization

Main program

Error handler

Subroutines

Subroutin#1

Subroutin#2

Subroutin#n

Unexecutable

Executable

Job-name.bas

Appendix

Appendix-16

 Global g.Mode% ' System mode
'<<<< Arrays >>>>
 Dim rob.err%(ROB.MAX) ' Robot error

• Job initialization
Initialization of local variables, initialization of global variables that is
managed by this job, definition of an error handler, opening a
communication port and so on are described.
Example)
 g.Mode%=MODE.INIT ‘ Initial mode
 On Error GoTo *ERR.HANDLER ‘ Definition of error handler
 ‘ Open robot communication
 Open “COM0” As #FNO.ROBOT RobType=580 RobNoList=1,2,3

• Main program
Main program has the loop structure generally. It selects the procedure
according to the internal state and calls a subroutine. After the procedure,
it goes to the top of the loop.
In the system initialization job, a program may terminate a job without a
loop structure.
Example)
*MAIN.LOOP
 Select Case g.Mode% ‘ System mode
 Case MODE.INIT ‘ Initial
 GoSub *INIT
 Case MODE.MANUAL ‘ Manual
 GoSub *MANUAL
 Case MODE.RUN ‘ Running
 GoSub *RUN
 Case Else ‘ No process
 End Select
 GoTo *MAIN.LOOP

• Error handler
An error handler jumped after a job error has occurred is described.
Example)
*ERR.HANDLER
 ‘ Error procedure
 :
 Resume *MAIN.LOOP

• Subroutines
Subroutines are described. A header description that contains the
function of a subroutine is added to the head of a subroutine.
Example)
'***
' Procedure: Subroutine-name
' Summary: Function
' Return: [OUT] Explanation-of-return-value
' Argument: [IN] Explanation-of-input-parameter
' [OUT] Explanation-of-output-parameter
' Caution: Remarks
'***
*Subroutine-name
 ‘ Procedure of subroutine

Appendix

Appendix-17

 Return

(4) Subroutine name
• The name has to contain only upper cases within 15 characters.
• The name has to be easy to understand using periods (.).

Example)
 *ROB.MOVE
 *ZAXIS.UP

(5) Lable name

• The name has to contain only upper cases within 15 characters.
• The name has to be easy to understand using periods (.).

Example)
 *ERR.HANDLER
 *MAIN.LOOP

(6) Variable name

• The name of a local variable has to contain only lower cases within 15
characters.

• The name of a global variable has to begin with “g.” and the first
character of a word in a variable has to be upper case.

• The name of a network global variable has to begin with “ng.” and the
top of a word in a variable has to be upper case.

• Only one variable has to be defined by Global, Dim, DimNet statement.
• The name has to be easy to understand using periods (.).
• A loop variable used for For-Next statement is named simply as i%, j%,

k% if the variable does not have the special meaning. (This is a common
description rule in all kinds of programming languages.)

Example)
 Global g.Mode% ‘ System mode (global)
 DimNet ng.St.Stat& ‘ Station status (network global)
 Dim err.rob%(ROB.MAX) ‘ Robot error (local)
 err.code% = 1 ‘ Error code (local)
 For i%=1 To 10 ‘ Example of a loop variable
 count&(i%) = count&(i%) + 1
 Next i%

(7) Header file

• The constant name defined by Define statement has to contain only
upper cases within 15 characters.

• The name has to be easy to understand using periods (.).
• I/O number, MB number, MW number, ML number, TIM number, PM

number have to be defined in a different file respectively. The following
table shows a file name and a prefix of a constant name.

Appendix

Appendix-18

Definition type Header file name Constant name
I/O number Io.hed Input: I.XX...XX

Output: O.XX...XX
MB number Mb.hed MB.XX...XX
MW number Mw.hed MW.XX...XX
ML number Ml.hed ML.XX...XX
TIM number Tim.hed TIM.XX...XX
PM number Pm.hed PM.XX...XX

(8) Expression, statement, function

• The first character of a word in the name has to be upper case and the
remains of it have to be lower cases.

Example)
 If mode% = 1 Then Return
 GoSub *SUB1

 SetRobNo(1)
• A reserved memory name has to contain only upper cases. Index

number of it must be described with parentheses.
Example)
 PM(addr%)
 MM(PM.ORIGIN)
 HERE
 P(10)

	Cover
	Warranty
	1.Introduction
	Hirata Robot System
	HrBasic and STP
	Example of Robot System

	2.Program Developing/Running Environment
	System Structure
	Software Components of HBDE
	Specifications
	STP Hardware Specifications
	STP Execution Time
	HrBasic Specifications
	HrBasic Statements and Functions

	3.Program Development Guideline
	Functional Specifications
	Interface Specifications
	Program Design Specifications
	Job Structure
	Header File
	Job Programming
	Init Job
	Mode Job
	Main Job
	Robot Job
	Tower Job
	Buzzer Job

	Debug

	4.Individual Functions
	Job
	Reserved Memory
	MB/MD
	MW
	ML
	INB/IND/OUTB/OUTD
	P and Its Structure
	IRB/IRD/ORB/ORD
	PM/MM/FM/SM
	STATUS
	HERE
	EXPARA

	Timer
	TIM

	File and Communication
	How to Access Data File
	How to Communicate with Peripheral Device

	Error Handling

	5.Syntax Rules
	Sentence
	Line
	Statement
	Function
	Comment
	Label
	Header File
	Define Statement
	Character Set
	Special Symbols

	6.Elements of Language
	Literal (Constant)
	Character Literal
	Numerical Literal
	Integer Type Literal
	Real Number Type Literal

	Variable
	Variable Name and Type Declaration Character
	Array Variable
	Local Variable, Global Variable and Network Global Variable

	Type Conversion
	Operator
	Arithmetic Operator
	Relational Operator
	Logical Operator
	Character string operator
	Priority of Operations

	Expression

	7.Structured Programming
	Element of Program Structure
	Sequence Structure
	Selection Structure
	Iteration Structure
	Usage of GoTo Statement

	Subroutine as Program Module
	Merit of Subroutine
	Practice and Note of HrBasic Subroutine
	Input Parameter and Output Parameter

	The Point of Structured Programming
	Header File
	Macro File

	8.Robot Control Programming
	Connection with HNC Robot
	Procedure of Robot Communication
	Open a Port for Robot Communication
	Access the Port of Robot Communication
	Close the port for robot communication

	Overview of Statements And Functions for Robot Control
	Sample Program
	Specification of Sample Program
	Job List of Sample Program
	Motion of Robots
	Header File
	Job Programs

	9.Commands
	List of Commands
	How to Read Command Explanation
	Comamnd-name (Type)

	Explanation of Each Command
	Abs (Function)
	And (Operator)
	Asc (Function)
	Atn (Function)
	AxesPara (Function)
	Calib (Statement)
	Chr$ (Function)
	ClearRobNo (Function)
	Close (Statement)
	CollisionCheck (Statement)
	ComFunction (Statement)
	ConsoleMsg (Function)
	ConsoleMsgOff (Statement)
	ConsoleMsgOn (Statement)
	Cos (Function)
	Date$ (Statement)
	Date$ (Function)
	Define (Statement)
	Delay (Statement)
	Dim (Statement)
	DimNet (Statement)
	DimPos (Statement)
	Disable (Statement)
	DisableDSRCheck (Statement)
	DisableOnlineErr (Statement)
	DisableRTSAuto (Statement)
	Enable (Statement)
	EnableDSRCheck (Statement)
	EnableOnlineErr (Statement)
	EnableRTSAuto (Statement)
	Eof (Function)
	Eqv (Operator)
	Err (Function)
	Exp (Function)
	Finish (Statement)
	Fix (Function)
	For…To…Step - Next (Statement)
	FreeFile (Function)
	GetPriority (Function)
	GetRobNo (Function)
	Global (Statement)
	GoSub (Statement)
	GoTo (Statement)
	Hex$ (Function)
	Hold On / Off (Statement)
	If ... Then - Else - EndIf　 (Statement)
	Imp (Operator)
	Inching (Statement)
	Include (Statement)
	InitGoSub (Statement)
	InitPos (Statement)
	Input # (Statement)
	Input$ (Function)
	InStr (Function)
	Int (Function)
	Job Name (Statement)
	Job Off (Statement)
	Job On (Statement)
	Job Start (Statement)
	Left$ (Function)
	Len (Function)
	Line Input # (Statement)
	Log (Function)
	Macro (Statement)
	Mid$ (Statement)
	Mid$ (Function)
	Mod (Operator)
	Move (Statement)
	NetClose (Function)
	NetOpen (Function)
	NetRead (Function)
	NetWrite (Function)
	Not (Operator)
	On Error GoTo (Statement)
	On...GoSub / On...GoTo (Statement)
	Open (Statement)
	Open “COM...” (Statement)
	Or (Operator)
	Pai (Function)
	PosRec (Function)
	Print # (Statement)
	PrintStr (Statement)
	Pulse (Statement)
	RchkHrcs (Function)
	ReadHrcs (Statement)
	Ref (Statement)
	Ref (Function)
	Rem (Statement)
	Resume (Statement)
	Return (Statement)
	Right$ (Function)
	RobCheckBpZone (Function)
	RobCheckCurPos (Function)
	RobCheckStop (Function)
	RobClearErr (Statement)
	RobDistance (Statement)
	RobGetCurAveTorq (Statement)
	RobGetCurPos (Statement)
	RobGetCurSpeed (Statement)
	RobGetCurTorq (Statement)
	RobReadSG (Statement)
	RobReadSvoPara (Statement)
	RobSetPosRange (Statement)
	RobWorldPos (Statement)
	RobWriteSG (Statement)
	RobWriteSvoPara (Statement)
	ScanStr (Function)
	Select Case (Statement)
	Seq - SeqEnd (Statement)
	Set (Statement)
	SetPriority (Function)
	SetRobNo (Function)
	Sgn (Function)
	Sin (Function)
	Space$ (Function)
	Sqr (Function)
	Str$ (Function)
	String$ (Function)
	Tan (Function)
	Time$ (Statement)
	Time$ (Function)
	TimeOut (Function)
	Val (Function)
	Wait (Statement)
	WriteHrcs (Statement)
	Xor (Operator)

	Appendix
	ASCII Codes
	LRC Caluculation
	Compiling Errors
	Running Job Errors
	Standard Coding Rules

