OPERATION MANUAL
HR Editor for Windows

VER. 2. 20

Hirata
World Leader in Production Technology
The information contained herein is the property of Hirata Corporation and shall not be reproduced in whole or in part without prior written approval of Hirata Corporation. The information contained herein is subject to change without notice and should not be constructed as a commitment by Hirata Corporation. Hirata Corporation assumes no responsibility for any errors or omissions in this document.

Warranty

All of Hirata’s products which is passed our formal inspection test shall be guaranteed against faults due to the negligence of Hirata for either earlier period of one year or four thousand hours of operation from the day of shipment from Hirata Factory. This warranty shall be applicable to the parts replacement and/or labor for repair in our factory and transportation cost shall not be applied. We will charge the repair of faults caused by the following reasons:

* Wrong usage which are prohibited in the instruction manual.
* After the expiration of guarantee period.
* Earthquake, fire, riot, violence, war and other force majeure.
* Modification, repair or adjustment is performed by unauthorized person.

Contact your sales agent for individual warranty coverage.
Chapter 1 Overview ... 1-1
 1.1 Introduction to HR Editor ... 1-1
 1.2 Operating Environment .. 1-3
 1.3 Connection with Robot Controller 1-4
 1.4 Parameter File 'harl.dat' .. 1-7

Chapter 2 Installation ... 2-1
 2.1 Install HR Editor ... 2-1
 2.2 Install Memory Card Driver ... 2-3
 2.3 Uninstall HR Editor .. 2-5
 2.4 Registration of File Types ... 2-5

Chapter 3 Main Menu .. 3-1
 3.1 Introduction to Main Menu .. 3-1
 3.2 [File]-[New Project] .. 3-4
 3.3 [File]-[Open Project] ... 3-5
 3.4 [File]-[Update Project] ... 3-5
 3.5 [File]-[Save Project As] .. 3-6
 3.6 [File]-[Position] ... 3-6
 3.7 [File]-[S.G. Data] .. 3-6
 3.8 [File]-[S.P. Data] .. 3-7
 3.9 [File]-[Configuration] .. 3-7
 3.10 [File]-[Servo Parameter] .. 3-8
 3.11 [File]-[Expanded Parameter] 3-8
 3.12 [File]-[Exit] .. 3-9
 3.13 [Memory Card]-[Open File] 3-10
 3.14 [Memory Card]-[Memory Card Information] 3-10
 3.15 [Memory Card]-[Memory Card Check] 3-11
 3.16 [Memory Card]-[Delete File] 3-11
 3.17 [Memory Card]-[Memory Card Format] 3-12
 3.18 [Memory Card]-[Binary Compare] 3-13
 3.19 [Memory Card]-[Dump] .. 3-14
 3.20 [Maintenance]-[Terminal] .. 3-15
 3.21 HRCS Robot Error Format ... 3-18
 3.22 [Maintenance]-[Robot Data Communication] 3-19
 3.23 [Set Up]-[Project Settings] 3-20
 3.24 [Set Up]-[Project Settings]-[Directory] 3-21
 3.25 [Set Up]-[Project Settings]-[RS232C Port] 3-23
 3.26 [Set Up]-[Project Settings]-[COM Format] 3-26
 3.27 [Set Up]-[Project Settings]-[STC COM Port] 3-30
 3.28 [Set Up]-[Robot Stroke] .. 3-32
 3.29 [Set Up]-[Printer] .. 3-33
 3.30 [Set Up]-[Language] .. 3-33
 3.31 [Set Up]-[Font] .. 3-34
 3.32 [Tools]-[Communication Test] 3-35
 3.33 'harl.ini' File ... 3-38
 3.34 'comtest.ini' File .. 3-39

Chapter 4 Upload/Download Robot Data 4-1
 4.1 Introduction to Uploading/Downloading 4-1
 4.2 Start Uploading/Downloading 4-2
 4.3 Upload from Robot to Computer 4-3
 4.4 Download from Computer to Robot 4-11
 4.5 Upload/Download History .. 4-19
 4.6 Waiting for COM Released When Via STC 4-21
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 Change Communication Conditions</td>
<td>4-22</td>
</tr>
<tr>
<td>4.8 Reading Robot Version</td>
<td>4-23</td>
</tr>
<tr>
<td>4.9 Exit Uploading/Downloading</td>
<td>4-23</td>
</tr>
<tr>
<td>4.10 Error Messages of Uploading/Downloading</td>
<td>4-24</td>
</tr>
<tr>
<td>Chapter 5 Edit Position Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Introduction to Position Editor</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Start Editing of Position Data</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3 View of Position Editor</td>
<td>5-3</td>
</tr>
<tr>
<td>5.4 Stroke Type Setting</td>
<td>5-5</td>
</tr>
<tr>
<td>5.5 Create New Position Data File</td>
<td>5-6</td>
</tr>
<tr>
<td>5.6 Open Position Data File</td>
<td>5-7</td>
</tr>
<tr>
<td>5.7 Open Position Data File Saved in Memory Card</td>
<td>5-8</td>
</tr>
<tr>
<td>5.8 Input Position Data</td>
<td>5-10</td>
</tr>
<tr>
<td>5.9 Select Cells</td>
<td>5-12</td>
</tr>
<tr>
<td>5.10 Search Data</td>
<td>5-14</td>
</tr>
<tr>
<td>5.11 Cut Data</td>
<td>5-17</td>
</tr>
<tr>
<td>5.12 Copy Data</td>
<td>5-17</td>
</tr>
<tr>
<td>5.13 Paste Data</td>
<td>5-18</td>
</tr>
<tr>
<td>5.14 Delete Data</td>
<td>5-20</td>
</tr>
<tr>
<td>5.15 Add, Subtract, Multiply, Divide Position Data</td>
<td>5-22</td>
</tr>
<tr>
<td>5.16 Rotate Position Data in X-Y Plane</td>
<td>5-24</td>
</tr>
<tr>
<td>5.17 Undo, Redo Operation to Edit Position Data</td>
<td>5-26</td>
</tr>
<tr>
<td>5.18 Excel Reference Definition</td>
<td>5-27</td>
</tr>
<tr>
<td>5.19 Read from or Write to Excel Worksheet</td>
<td>5-29</td>
</tr>
<tr>
<td>5.20 Print Position Data</td>
<td>5-30</td>
</tr>
<tr>
<td>5.21 Save Position Data</td>
<td>5-31</td>
</tr>
<tr>
<td>5.22 Save Position Data to Memory Card</td>
<td>5-32</td>
</tr>
<tr>
<td>5.23 Close Editing Window of Position Data</td>
<td>5-33</td>
</tr>
<tr>
<td>5.24 Exit Editing of Position Data</td>
<td>5-33</td>
</tr>
<tr>
<td>5.25 Error Messages of Position Editor</td>
<td>5-34</td>
</tr>
<tr>
<td>Chapter 6 Edit Robot Settings Data</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Introduction to Robot Settings Data Editor</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Start Editing of Robot Settings Data</td>
<td>6-3</td>
</tr>
<tr>
<td>6.3 View of Robot Settings Data Editor</td>
<td>6-4</td>
</tr>
<tr>
<td>6.4 Stroke Type Setting</td>
<td>6-5</td>
</tr>
<tr>
<td>6.5 Create New Robot Settings Data File</td>
<td>6-6</td>
</tr>
<tr>
<td>6.6 Open Robot Settings Data File</td>
<td>6-7</td>
</tr>
<tr>
<td>6.7 Open Robot Settings Data File Saved in Memory Card</td>
<td>6-8</td>
</tr>
<tr>
<td>6.8 Show and Select Group of Robot Settings Data</td>
<td>6-10</td>
</tr>
<tr>
<td>6.9 Input Robot Settings Data</td>
<td>6-11</td>
</tr>
<tr>
<td>6.10 Undo, Redo Operation to Edit Robot Settings Data</td>
<td>6-12</td>
</tr>
<tr>
<td>6.11 Excel Reference Definition</td>
<td>6-13</td>
</tr>
<tr>
<td>6.12 Read from or Write to Excel Worksheet</td>
<td>6-16</td>
</tr>
<tr>
<td>6.13 Check Configuration</td>
<td>6-17</td>
</tr>
<tr>
<td>6.14 Print Robot Settings Data</td>
<td>6-18</td>
</tr>
<tr>
<td>6.15 Save Robot Settings Data</td>
<td>6-19</td>
</tr>
<tr>
<td>6.16 Save Robot Settings Data to Memory Card</td>
<td>6-20</td>
</tr>
<tr>
<td>6.17 Close Editing of Robot Settings Data</td>
<td>6-21</td>
</tr>
<tr>
<td>6.18 Exit Editing of Robot Settings Data</td>
<td>6-21</td>
</tr>
<tr>
<td>6.19 Error Messages of Robot Settings Data Editor</td>
<td>6-22</td>
</tr>
<tr>
<td>6.20 Definition File for Robot Settings Data</td>
<td>6-24</td>
</tr>
<tr>
<td>Chapter 7 Trouble Shooting When Uploading or Downloading</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Trouble Shooting When Uploading or Downloading</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Change Communication Setting of Windows System</td>
<td>7-5</td>
</tr>
</tbody>
</table>
7.3 How to Recover from System Data Destroyed ... 7- 6
7.4 How to Recover from Position Data Destroyed ... 7- 7
1. Overview

1.1. Introduction to HR Editor

HR Editor is the tool to edit robot data on a personal computer. Available data for HR Editor is as follows.

- **Position data**: Teaching data of the robot.
- **System data**: System Generation (S.G.) Data and System Parameter (S.P.) Data including the various specifications for the motion of the robot and the various constants for the system.
- **Configuration**: Definition of system configuration for the robots and the motors using by HNC-5XX type controllers.
- **Servo parameter**: Definition of specification and constants for the servo motors using by HNC-5XX type controllers. This data type includes “Memory Data” that keeps servo parameters, A-CAL DISTANCE and EPI data for HNC-1XX,2XX,3XX,544 type controllers.
- **Expanded parameter**: Expanded S.G./S.P. data using by HNC-5XX type controllers.

These data are categorized to two types for the explanation of this manual.

- Position data
- Robot settings data (data except position)

You can change and register the above-mentioned data by the teaching pendant connected with the robot controller.

Using HR Editor, you can save or edit the all kind of data above-mentioned on a computer. HR Editor has following functions.

- Uploading the data from a robot to a computer.
- Reading or writing data in a memory card for the robot.
- Editing and printing data on a computer.
- Reading from or writing to Excel worksheet.
- Downloading the data from a computer to a robot.

You can use these functions for saving the robot data, teaching by off-line or making the documents of the robot system.

Important

- “HNC-1XX,2XX,3XX,544” represents the following controller types.
 HNC-1XX, HNC-2XX, HNC-3XX, HNC-544, HAC-644
 Max. 4 axes controlled.
- “HNC-5XX” represents the following controller types.
 HNC-580, HNC-584, HNC-586, HNC-564, HNC-566, HNC-568
 Includes 4 virtual robots and max. 6 axes controlled per robot.
 Notice that HNC-544 does not belong to this type.
Robot Data Types and Access Types

There are two types to access robot data for HR Editor.

(1) Communication by RS232C
You can upload or download robot data by communication to connect the serial port of your computer with the robot controller.

(2) Memory card
Standard robot controllers have the memory card slot and you can use the memory card to save or load robot data by operating the teaching pendant.
HR editor can read from or write to this memory card if the card slot is equipped in the computer.

The following table shows the relation of controller types, robot data type and access type.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Access Type</th>
<th>HNC-1XX, 2XX, 3XX, 544</th>
<th>HNC-5XX</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>Position Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>Position Editor</td>
</tr>
<tr>
<td>S.G. Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>S.G. Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>S.G. Editor</td>
</tr>
<tr>
<td>S.P. Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>S.P. Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>S.P. Editor</td>
</tr>
<tr>
<td>Configuration</td>
<td>Communication</td>
<td>----</td>
<td>OK</td>
<td>Configuration Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>----</td>
<td>NG *2</td>
<td>Configuration Editor</td>
</tr>
<tr>
<td>Servo Parameter</td>
<td>Communication</td>
<td>OK *1</td>
<td>OK</td>
<td>Servo Parameter Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK *1</td>
<td>OK</td>
<td>Servo Parameter Editor</td>
</tr>
<tr>
<td>Expanded Parameter</td>
<td>Communication</td>
<td>----</td>
<td>OK</td>
<td>Expanded Parameter Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>----</td>
<td>OK</td>
<td>Expanded Parameter Editor</td>
</tr>
</tbody>
</table>

OK: Robot holds this data and HR Editor can access it.
----: Robot does not hold this data.
NG: Robot holds this data but HR Editor can not access it.
*1 HR Editor treats servo parameter of HNC-1XX,2XX,3XX,544 as “Memory Data”.
*2 Robot controller has no function to read or write to the memory card for this data.

Extension of Robot Data File Name

HR Editor manages robot data files using the following extension of file name.

- Position Data .pos
- S.G. Data .sg
- S.P. Data .sp
- Configuration .cfg
- Servo Parameter HNC-1XX,2XX,3XX,544: .mem HNC-5XX: .svo
- Expanded Parameter .epr
1.2. Operating Environment

HR Editor runs under following environment.

Computer
Above i486 processor and Windows 95/98, Windows NT4.0 running

Memory
Above 16MB (recommended above 32MB)

Hard Disk
Available above 10MB

Display
Above 640 x 480 pixel

Operating System
Windows 95/98 or Windows NT4.0

Memory Card
SRAM memory card formatted and saved by HIRATA robot controller.
TOSHIBA I/O type card is not available.
You cannot access a memory card on a computer running Windows NT4.0.

Robot Controller Type
Types of a robot controller that HR Editor can operate are as follows.

1. HNC-1XX, HNC-2XX, HNC-3XX, HNC-544, HAC-644 (max. 4 axes)
 Note 1) These types are displayed as “HNC-1XX,2XX,3XX,544 (max. 4 axes)” in HR Editor.
 Note 2) HR Editor does not support the type that is numbered by two decimals (e.g. HNC-34).
 Note 3) Position data is not available to upload, download or edit in case of the following combination of the robot system. You can use a memory card to save position data for these systems. And HR editor can read or write the memory card.
 - HNC-SR364+AR-K440
 - HNC-YS364+AR-K400
 Note 4) Among HNC-1XX controllers, DD robot is not supported. But the case of using the upgraded ROM to the DD robot controller is excepted from this restriction.

2. HNC-5XX standard (max. 6 axes)
3. HNC-5XX for semiconductor (max. 6 axes)
4. HNC-5XX with URL (max. 6 axes)
 Note 5) “HNC-5XX” represents the following robot controllers based on “HNC-580” controller that includes four virtual robots and can control six axes maximum per robot.
 - HNC-580, HNC-584, HNC-586, HNC-564, HNC-566, HNC-568
 Note 6) “HNC-5XX for semiconductor” is the type that holds the different S.G. data definition from “HNC-5XX standard” type. “HNC-5XX with URL” is the type that holds the different position data from “HNC-5XX standard” type. URL is robot parameter that is contained in position data of a robot. URL defines the pose of arms of a SCARA type robot. (See “Input Position Data”.) There are very few robots of these types. So, you may ordinarily specify “HNC-5XX standard” type.

 Note 7) If the robot controller uses the customized ROM, HR Editor cannot edit the robot data but it can upload or download the robot data. When using the customized ROM, please ask us.

 Note 8) Besides these controller types, the robot controller has the stroke-length type as follows.
 - Short Stroke: -999.999 to +999.999 mm
 - Standard Stroke: -9999.999 to +9999.999 mm
 - Long Stroke: -99999.99 to +99999.99 mm
 - Super Long Stroke: -999999.9 to +999999.9 mm
 HR Editor supports all these stroke types.
1.3. Connection with Robot Controller

When you receive the data from a robot or send the saved data to a robot by HR Editor, RS232C interface is used for the communication with a robot. The following conditions are necessary to communicate with a robot properly.

- Communication parameters correspond with a robot.
- Communication cable lines are connected correctly.

You can communicate with a robot via STC (Station Controller), a product by Hirata Corporation. In this case, you must set “Via STC” in [Set Up]-[Project Settings]-[COM Format] of Main Menu.

Setting of Communication Parameters

Communication parameters are as follows.

- Speed (4800, 9600, 19200, 38400)
- Data length (7, 8)
- Stop bits (1, 2)
- Parity (E, O, N)
- Format (STX-ETX-LRC)

You can set RS232C parameters for the computer by [Set Up] -[Project Settings]-[RS232C Port] of Main Menu. And you can set communication format by [Set Up] -[Project Settings]-[COM Format] of Main Menu. Setting data is saved to the parameter file 'harl.dat'. (See "Parameter File ‘harl.dat’")

See “[Set Up]-[Project Settings]-[RS232C Port]” about the standard RS232C settings of a robot or STC. And you can see details of how to set RS232C parameters of a robot or STC in the manuals of a robot controller or STC.

See “[Set Up]-[Project Settings]-[COM Format]” about other parameters.

Cable Connection

A cross cable is needed for the connection between a computer and a robot, between a computer and STC or between STC and a robot. The RS232C connection is as follows.
1. Overview

Note:
- You cannot connect with pins that are not shown above.
- FG is connected with a shield of the cable.
- You cannot connect pin number #1 in a 9 pins cable for the 9 pins - 25 pins or 9 pins - 9pins connection.

If you select the communication via STC, you can refer the following explanation.

STC COM Port

STC has the following communication ports. According to COM number, the usage for communication is different. You must choose the STC COM port correctly.

- **COM0**: Available for only HPC-589 (old) type. Connected with a robot by dual port RAM.
- **COM1**: Connected with a robot normally. Also used general-purpose port.
- **COM2**: Connected with a robot normally. Also used general-purpose port.
- **COM3**: Connected with a robot normally. Also used general-purpose port.
- **COM8**: Host port. Connected with a host computer normally. But able to connect with a robot or HARL-III Compiler. Also used general-purpose port.

Through Mode

When HR Editor (or HARL-III Compiler) communicates via STC with a device such as a robot connected with STC COM, STC transfers the status to the “Through Mode”.

“Through Mode” is the mode that has the communication path in STC between the computer and the device.
There are two types for the communication of Through Mode as follows.

1. All the jobs running in STC are stopped immediately when the communication of Through Mode starts. And all the jobs restart at the first step (step number zero) when the communication of Through Mode is terminated.

2. All the jobs continue to run without stopping when the communication of Through Mode starts. But if there is the conflict of the COM access between the computer using the Through Mode and the HARL-III program, the faster access gets priority to communicate with the COM and the later access is suspended to communicate till the COM is released.

You can select (1) or (2) type for Through Mode in [Set-up]-[Project Settings]-[STC COM port]. And you can set the parameters of RS232C for the STC COM using the communication of Through Mode.

See “[Set-up]-[Project Settings]-[STC COM port]” for details.
1. Overview

1.4. Parameter File ‘harl.dat’

[Position Editor](PosEdit.exe), [S.G. Editor](SgEdit.exe), [S.P. Editor](SpEdit.exe), [Configuration Editor](CfgEdit.exe), [Servo Parameter Editor](SvoEdit.exe), [Expanded Parameter Editor](EprEdit.exe) or [Robot Data Communication](UpDown.exe) in the start menu of Windows can edit robot data and communicate with a robot by reading and using the parameters from ‘harl.dat’ file. ‘harl.dat’ file includes a language type, directories, communication parameters. You can set the parameters to ‘harl.dat’ using [Set Up] of Main Menu.

‘harl.dat’ does not exist at the installation of HR Editor. It is created when Main Menu starts by [HR-Editor x.x] after the installation. ‘harl.dat’ is written when the settings is changed by Main Menu, but never deleted. After the installation, you must start up [HR-Editor x.x] first before you select [Position Editor], [S.G. Editor], [S.P. Editor] or [Robot Data Communication] of the start menu. (See “Install HR Editor”)

Contents of the parameter file ‘harl.dat’ are as follows. HR Editor uses the data with ‘*’ mark.

<table>
<thead>
<tr>
<th>Line #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Version</td>
</tr>
<tr>
<td>2</td>
<td>Date of release</td>
</tr>
<tr>
<td>3</td>
<td>* Language (E: English J: Japanese)</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>* Directory of system files</td>
</tr>
<tr>
<td>7</td>
<td>Directory of editor files</td>
</tr>
<tr>
<td>8</td>
<td>Directory of work files</td>
</tr>
<tr>
<td>9</td>
<td>Directory of source files</td>
</tr>
<tr>
<td>10</td>
<td>Directory of header files</td>
</tr>
<tr>
<td>11</td>
<td>Directory of make files</td>
</tr>
<tr>
<td>12</td>
<td>Directory of macro files</td>
</tr>
<tr>
<td>13</td>
<td>* Directory of position, S.G., S.P. data files</td>
</tr>
<tr>
<td>14</td>
<td>* PC COM speed (4800, 9600, 19200, 38400)</td>
</tr>
<tr>
<td>15</td>
<td>* PC COM parity (E, O, N)</td>
</tr>
<tr>
<td>16</td>
<td>* PC COM data length (7, 8)</td>
</tr>
<tr>
<td>17</td>
<td>* PC COM stop bits (1, 2)</td>
</tr>
<tr>
<td>18</td>
<td>* Communication format (0: STX-ETX-LRC, 1: STX-CR-LF)</td>
</tr>
<tr>
<td>19</td>
<td>* Communication error retry number (more than 0)</td>
</tr>
<tr>
<td>20</td>
<td>* Communication time out seconds (more than 0)</td>
</tr>
<tr>
<td>21</td>
<td>* STC Station Number (000 to 255)</td>
</tr>
<tr>
<td>22</td>
<td>Not used</td>
</tr>
<tr>
<td>23</td>
<td>Not used</td>
</tr>
<tr>
<td>24</td>
<td>Not used</td>
</tr>
<tr>
<td>25</td>
<td>Not used</td>
</tr>
<tr>
<td>26</td>
<td>HARL-III editor file</td>
</tr>
<tr>
<td>27</td>
<td>Not used</td>
</tr>
<tr>
<td>28</td>
<td>* Current used PC COM (1 to 6)</td>
</tr>
<tr>
<td>29</td>
<td>Reserved</td>
</tr>
<tr>
<td>30</td>
<td>Reserved</td>
</tr>
<tr>
<td>31</td>
<td>* Communicated with STC or robot (0: robot, 1: STC)</td>
</tr>
<tr>
<td>32</td>
<td>* COM number in STC (0, 1, 2, 3, 8, If Line #31 is robot, null is set.)</td>
</tr>
<tr>
<td>33</td>
<td>* Robot number</td>
</tr>
<tr>
<td>34</td>
<td>* Controller type (0: HNC-3XX, 1: HNC-5XX with URL, 2: HNC-5XX without URL)</td>
</tr>
<tr>
<td>35</td>
<td>* Stopping jobs for STC COM communication (0: Stopping jobs, 1: Not stopping jobs)</td>
</tr>
<tr>
<td>36</td>
<td>* COM released timer for STC COM communication (seconds)</td>
</tr>
<tr>
<td>37</td>
<td>Not used</td>
</tr>
</tbody>
</table>
1. Overview

Line #38 Not used
Line #39 Not used
Line #40 * STC COM1: Using current RS232C parameters in STC
 (0:Not using,1:Using)
Line #41 * STC COM1: Speed (1200,2400,4800,9600,19200,38400)
Line #42 * STC COM1: Parity (E,O,N)
Line #43 * STC COM1: Data length (7,8)
Line #44 * STC COM1: Stop bits (1,2)
Line #45 * STC COM1: Robot number
Line #46 * STC COM1: Controller type(0:HNC-3XX,1:HNC-5XX with URL,2:HNC-
 5XX without URL,100:other device,Null:not used)
Line #47 * STC COM1: COM name
Line #48 Not used
Line #49 Not used
Line #50 * STC COM2: Using current RS232C parameters in STC
 (0:Not using,1:Using)
Line #51 * STC COM2: Speed (1200,2400,4800,9600,19200,38400)
Line #52 * STC COM2: Parity (E,O,N)
Line #53 * STC COM2: Data length (7,8)
Line #54 * STC COM2: Stop bits (1,2)
Line #55 * STC COM2: Robot number
Line #56 * STC COM2: Controller type(0:HNC-3XX,1:HNC-5XX with URL,2:HNC-
 5XX without URL,100:other device,Null:not used)
Line #57 * STC COM2: COM name
Line #58 Not used
Line #59 Not used
Line #60 * STC COM3: Using current RS232C parameters in STC
 (0:Not using,1:Using)
Line #61 * STC COM3: Speed (1200,2400,4800,9600,19200,38400)
Line #62 * STC COM3: Parity (E,O,N)
Line #63 * STC COM3: Data length (7,8)
Line #64 * STC COM3: Stop bits (1,2)
Line #65 * STC COM3: Robot number
Line #66 * STC COM3: Controller type(0:HNC-3XX,1:HNC-5XX with URL,2:HNC-
 5XX without URL,100:other device,Null:not used)
Line #67 * STC COM3: COM name
Line #68 Not used
Line #69 Not used
Line #70 * STC COM8: Using current RS232C parameters in STC
 (0:Not using,1:Using)
Line #71 * STC COM8: Speed (1200,2400,4800,9600,19200,38400)
Line #72 * STC COM8: Parity (E,O,N)
Line #73 * STC COM8: Data length (7,8)
Line #74 * STC COM8: Stop bits (1,2)
Line #75 * STC COM8: Robot number
Line #76 * STC COM8: Controller type(0:HNC-3XX,1:HNC-5XX with URL,2:HNC-
 5XX without URL,100:other device,Null:not used)
Line #77 * STC COM8: COM name
Line #78 Not used
Line #79 Not used
2. Installation

2.1. Install HR Editor

The installation program (SETUP.EXE) contained in the system disks creates the new directory (default: ¥Program Files¥HrEdit) in the specified hard disk and copies files of HR Editor.

In this section, we assume the installing floppy drive is ‘A:’ and the destination directory of the installing hard disk is ‘C:’ when you install HR Editor.

Note) You have to terminate all Windows applications.
If you have inserted a memory card to the card slot, remove it.

Uninstall Current HR Editor

If HR Editor has been already installed, uninstall the current HR Editor according to “Uninstall HR Editor”.

Confirm Available Hard Disk

You must confirm that available volume of hard disk is above 10MB before the installation.

How to Install

1. Start Windows95/98/NT.
2. Insert the system disk of HR Editor to the drive.
3. Start installation program to click or double-click “Setup.exe” in the system disk. If the disk is CD-R, refer to “ReadMe.txt” in the disk.
4. The installation program runs and operate according to the guidance message. During the installation, the dialog box to input a security ID will be shown. Please input the security ID printed on the setup disk #1. If the specified ID is invalid, the installation is terminated unsuccessfully. When the installation completes, following files are copied to the specified directory.

- Default.hrп: Default project file
- Harl.ini: Initializing file for Main Menu
- Comtest.ini: Initializing file for Communication Test
- HrMenu.exe: Executable file of Main Menu
- PosEdit.exe: Executable file of Position Editor
- SgEdit.exe: Executable file of S.G. Editor
- SpEdit.exe: Executable file of S.P. Editor
- CfgEdit.exe: Executable file of Configuration Editor
- SvoEdit.exe: Executable file of Servo Parameter Editor
- EprEdit.exe: Executable file of Expanded Parameter Editor
- UpDown.exe: Executable file of Robot Data Communication
- HRhelpE.hlp: Help file of HR Editor (English)
- HRhelpE.gid: GID file for Help (English)
- HRhelpE.cnt: Help contents file of HR Editor (English)
- HRhelpJ.hlp: Help file of HR Editor (Japanese)
- HRhelpJ.gid: GID file for Help (Japanese)
- HRhelpJ.cnt: Help contents file of HR Editor (Japanese)
- Variable.dag: S.G. data definition file (for HNC-3XX)
- Variable.dap: S.P. data definition file (for HNC-3XX)
- Variable_1.dam: Memory data (type 1) file (for HNC-3XX)
- Variable_2.dam: Memory data (type 2) file (for HNC-3XX)
- Variable_3.dam: Memory data (type 3) file (for HNC-3XX)
- Variable_4.dam: Memory data (type 4) file (for HNC-3XX)
2. Installation

Vari_6.dac Configuration definition file (for HNC-5XX)
Vari_6.dae Expanded parameter definition file (for HNC-5XX)
Vari_6.dag S.G. data definition file (for HNC-5XX)
Vari_6_Semicon.dag S.G. data definition file (for HNC-5XX Semiconductor)
Vari_6.dap S.P. data definition file (for HNC-5XX)
Vari_6.das Servo parameter definition file (for HNC-5XX)
MsgE dsp,MsgJ dsp Message definition file of Main Menu
PemsgE dsp,PemsgJ dsp Message definition file of Position Editor
SgemsgE dsp,SgemsgJ dsp Message definition file of S.G. Editor
SpemsgE dsp,SpemsgJ dsp Message definition file of S.P. Editor
CfgmsgE dsp,CfgmsgJ dsp Message definition file of Configuration Editor
SvomsgE dsp,SvomsgJ dsp Message definition file of Servo Parameter Editor
EprmsgE dsp,EprmsgJ dsp Message definition file of Expanded Parameter Editor
UdmsgE dsp,UdmsgJ dsp Message definition file of Robot Data Communication
ComerrE dsp,ComerrJ dsp Message definition file of communication error
RoberrE dsp,RoberrJ dsp Message definition file of robot error
Stc_errE dsp,Stc_errJ dsp Message definition file of STC error
ErrcapE dsp,ErrcapJ dsp Message definition file of error window caption
VBrunErrE dsp, VBrunErrJ dsp Message definition file of VB runtime error
Hrcom.dll HR Editor common DLL

The following files will be copies to the directory where Windows 95/98/NT is installed.
¥System¥HrMemCardX.ocx Memory card access ActiveX
¥System¥Hmc.dll Memory card access DLL
¥System¥HrMcdErrE dsp Message definition file of memory card access
¥System¥HrMcdErrJ dsp
¥System¥Himcard.vxd Device driver for memory card
¥Inf¥Himcard.inf Device driver setup information for memory card

6. After the installation, the group icon [HR-Editor x.x] is registered in the start menu of Windows. And in this group, following icons are registered.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[HR-Editor x.x]</td>
<td>Starts Main Menu of HR-Editor. Using Main Menu, you can set the directories, communication parameters and manage the projects and operate the terminal window. And you can start each Editor and Robot Data Communication.</td>
</tr>
<tr>
<td>[Position Editor]</td>
<td>Starts Position Editor (PosEdit.exe) alone.</td>
</tr>
<tr>
<td>[S.G. Editor]</td>
<td>starts S.G. Editor (SgEdit.exe) alone</td>
</tr>
<tr>
<td>[S.P. Editor]</td>
<td>Starts S.P. Editor (SpEdit.exe) alone.</td>
</tr>
<tr>
<td>[Configuration Editor]</td>
<td>Starts Configuration Editor (CfgEdit.exe) alone.</td>
</tr>
<tr>
<td>[Servo Parameter Editor]</td>
<td>Starts Servo Parameter Editor (SvoEdit.exe) alone.</td>
</tr>
<tr>
<td>[Expanded Parameter Editor]</td>
<td>Starts Expanded Parameter Editor (EprEdit.exe) alone.</td>
</tr>
<tr>
<td>[Robot Data Communication]</td>
<td>Starts Robot Data Communication alone. You can upload or download the robot data.</td>
</tr>
</tbody>
</table>
2. Installation

[Help] Help for HR Editor is shown.

7. After the installation, you must start Main Menu first by [HR-Editor x.x] in the start menu. If you start an each Editor or [Robot Data Communication] first, an error has occurred since ‘harl.dat’ file is not created. ‘harl.dat’ file is created after running of Main Menu with checking directories for HR Editor. If ‘harl.dat’ file has been created once, you can starts an each Editor or [Robot Data Communication] without running of Main Menu. (See “Parameter File ‘harl.dat’”)

8. After the installation, a new project is opened when Main Menu starts. In this status, settings of file directories, communication parameters and communication format for STC or a robot are default.

So you have to set proper values to select [Set Up]-[Project Settings]-[Directory], [Set Up]-[Project Settings]-[RS232C Port and [Set Up]-[Project Settings]-[COM Format] in Main Menu.

You can save the settings to select [File]-[Save Project As]. At the next running of Main Menu, the saved settings are automatically read from the last used project file.

When you change the settings by Main Menu, the settings are written to ‘harl.dat’ file and an each Editor or [Robot Data Communication] will use ‘harl.dat’ file.

2.2. Install Memory Card Driver

To insert the memory card to the card slot, HR Editor can access the memory card (HNC memory card) used by the robot controller if the computer is equipped with the card slot. If Windows NT is running, HR Editor cannot access the memory card. Also if your computer does not support PCMCIA (Card Service), HR Editor cannot access the memory card.

When HR Editor is installed, the driver file to access the memory card is copied to the hard disk of the computer. Because this driver is based on Windows plug and play, the installation of the driver is executed at the first insertion of the memory card.

After HR Editor installation, operate as follows to install the memory card driver. After this operation one time, HR Editor can access the memory card only by insertion to the card slot.

You must execute the following operation with the condition to terminate all application programs including HR Editor.

1. Insert the memory card to the card slot of the computer.

2. “New hardware found” dialog is shown.

3. “Building hardware information database” dialog is shown to create the hardware information database. And then the driver installation is executed automatically by Windows plug and play.

4. “New hardware found” dialog is shown. If you can see the hardware name “HNC XXXX Memory Card” in this dialog, the installation of HNC memory card driver is completed. If you can see the other name such as “SRAM memory card”, still inserting the memory card, you must operate after “5.”

If you cannot see the hardware name in this dialog, still inserting the memory card, you have to open device manager by operate “5.” to “7.” After [Memory Technology Drivers (MTD)] double-clicked, you can see the hardware name of the currently inserted memory card at the node under [Memory Technology Drivers (MTD)]. If this name is not “HNC XXXX Memory Card”, operate after “9.”
2. Installation

5. Open [Settings]-[Control Panel] from the start menu of Windows.

6. Open [System] icon to show system properties window.

7. Select [Device Manager] tab to show the device structure.

8. After [Memory Technology Drivers (MTD)] double-clicked, you can see the hardware name of the currently inserted memory card such as “SRAM memory card” at the node under [Memory Technology Drivers (MTD)]. Double-click this hardware name or click [Properties] button selecting the hardware name to show the hardware properties.

10. Click [Change Driver] to show the device selection window.

11. Select “HNC XXXX Memory Card” and click [OK] button.

12. Neglecting the message “No Drivers are installed for this device.” click [OK] button.

13. The message “Your hardware settings have changed. You must restart your computer for these changes to take effect. Do you want to restart your computer?” is shown. Click [Yes] to restart the computer.

14. After the computer restarted, open device manager by operation “5.” to “7.”

15. After [Memory Technology Drivers (MTD)] double-clicked, if you can see the hardware name “HNC XXXX Memory Card” of the memory card, the installation of HNC memory card driver is completed.

Confirmation of Memory Card Hardware Name

You can confirm the memory card hardware name as follows after inserting the memory card to the card slot.

2. Open [System] icon to show system properties window.

3. Select [Device Manager] tab to show the device structure.

4. Double-click [Memory Technology Drivers (MTD)] node to show the hardware name of the currently inserted memory card at the node under [Memory Technology Drivers (MTD)].

If you can see the hardware name “HNC XXXX Memory Card”, the installation of the driver that HR Editor can recognize has been completed correctly.

If you can see the other name, you have to operate after “5.” of the memory card installation procedures mentioned above.
2. Installation

2.3. Uninstall HR Editor

3. The uninstalling program is started. Operate according to shown messages.
4. During uninstalling HR Editor, the message that means “This file is shared.” may be showed. In this case, select [Save]. And if you select [Save], the message that means “Some components cannot be deleted.” may be shown at the end of uninstalling but this is not an error.
5. At the end of uninstalling, the message that means “Directory cannot been deleted.” may be shown. This is not an error and this message is shown in case some files (for example ‘har1.dat’) besides the installing files remain at the directory of HR Editor system. If you don not need to save the installed directory, delete the directory by the explorer after uninstalling completed.

2.4. Registration of File Types

When installation of HR Editor, the installer registered file types of robot data files to Windows system.
Registration of file types means that data file is related to the editor application.
If you show the directory at which robot data files are located by Explore, robot data icons will be shown as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Type</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>630uera.cfg</td>
<td>2K</td>
<td>HR Configuration File</td>
<td>1/6/00 6:23 AM</td>
</tr>
<tr>
<td>630uera.cdx</td>
<td>1K</td>
<td>CFX File</td>
<td>1/6/00 6:23 AM</td>
</tr>
<tr>
<td>630uera.exp</td>
<td>3K</td>
<td>HR Expanded File</td>
<td>1/6/00 2:43 AM</td>
</tr>
<tr>
<td>630uera.pos</td>
<td>24K</td>
<td>HR Position File</td>
<td>1/6/00 2:43 AM</td>
</tr>
<tr>
<td>630uera.sg</td>
<td>2K</td>
<td>HR S.G. Data File</td>
<td>1/6/00 7:04 AM</td>
</tr>
<tr>
<td>630uera.sgr</td>
<td>1K</td>
<td>S.G. File</td>
<td>1/6/00 7:04 AM</td>
</tr>
<tr>
<td>630uera.sp</td>
<td>2K</td>
<td>HR S.P. Data File</td>
<td>1/6/00 2:43 AM</td>
</tr>
</tbody>
</table>

Select a robot data file in Explore and click or double-click an icon to start an editing application of HR Editor opening the selected file.

Note) Before executing the above-mentioned operation, you must start Main Menu of HR Editor to select [Start]-[Programs]-[HR Editor X.XX]-[HR Editor X.XX] and terminate it only once after installation of HR Editor.
3. Main Menu

3.1. Introduction to Main Menu

Main Menu is started by clicking [Programs]-[HR-Editor x.x]-[HR-Editor x.x] in the start menu. After starting, Main Menu shows the logo and the menu window as follows.

Main Menu is the integrated menu for HR Editor. You can use the following functions.

[File] menu
- [New Project]
 Create a new project.
- [Open Project]
 Open the project already existed.
- [Update Project]
 Update the current opened project.
- [Save Project As]
 Save the current opened project as the other name.
- [Position]
 Start Position Editor (PosEdit.exe).
- [S.G. Data]
 Start S.G. Editor (SgEdit.exe).
- [S.P. Data]
 Start S.P. Editor (SpEdit.exe).
- [Configuration]
 Start Configuration Editor (CfgEdit.exe).
- [Servo Parameter]
 Start Servo Parameter Editor (SvoEdit.exe).
- [Expanded Parameter]
 Start Expanded Parameter Editor (EprEdit.exe).
- [Exit]
 Exit HR Editor.

[Memory Card] menu
- [Open File]
 Open a file saved in a robot memory card.
- [Memory Card Information]
 Show memory card information such as file list, memory size, number of using files and free space and so on.
- [Memory Card Check]
 Check a robot memory card formatted.
- [Delete File]
 Delete a file save in a robot memory card.
- [Memory Card Format]
 Format a robot memory card.
- [Binary Compare]
 Compare two memory card files as binary data.
- [Dump]
 Dump a robot memory card.
[Maintenance] menu

[Terminal]
Communicate by terminal mode. You can receive or send HRCS (Hirata Robot Communication System) commands for a robot or STC.

[Robot Data Communication]
Upload or download position data, S.G data, S.P. data, configuration, servo parameter or expanded parameter.
(Start Robot Data Communication (UpDown.exe).)

[Set Up] menu

(Project Name) Project Settings
Set several conditions of the current opened project. Contents of settings are as follows.
• Directory
 Set the directory for robot data files.
• RS232C Port
 Set communication parameters of COM ports of a computer.
• COM Format
 Set communication conditions such as whether via STC or robot directly, STC number, robot number, COM number in STC, type of robot controller, communication retry number, communication time out value.
• STC COM Port
 Set various parameters for STC COM ports in the case of the communication via STC.

[Robot Stroke]
Set robot stroke types as default used in editing applications.

[Printer]
Set printer conditions.

[Language]
Select displayed language (English or Japanese).

[Font]
Select a font of Main Menu.

[Clear List of Recent Files]
Remove all lists of recent used project files displayed in [File] menu.

[Tools] menu

[Ascii Code]
Show ASCII code table.

[Robot Error Code]
Show robot HRCS command error response table.

[STC Error Code]
Show STC HRCS command error response table.
See section “[Tool] Menu” in “[Maintenance], [Terminal]” about these tools.

[Communication Test]
Test the communication with a robot or STC. This examines the RS232C port automatically and renews the project settings.

[Window] menu

(Note) The following menus to operate editor windows are available only when you have started editors from Main Menu. If you started editors alone from Windows [Start] menu, these menus are disabled.

[Maximize All Editors]
Maximize all editor windows running currently.

[Minimize All Editors]
Minimize all editor windows running currently.

[Arrange Editor Windows]
Arrange editor windows running currently. Arrangement is as follows.
• Move Main Menu to the top of the screen.
• Maximize editor windows not overlapped with Main Menu window.

[Cascade Editor Windows]
Cascade editor windows running currently under Main Menu window.

[Position Editor]
This menu is available only when Position Editor has been started from Main Menu.
Position Editor among editor windows is activated to show at the top of windows.

[S.G. Editor]
This menu is available only when S.G. Editor has been started from Main Menu.
S.G. Editor among editor windows is activated to show at the top of windows.

[S.P. Editor]
This menu is available only when S.P. Editor has been started from Main Menu.
S.P. Editor among editor windows is activated to show at the top of windows.

[Configuration Editor]
This menu is available only when Configuration Editor has been started from Main Menu. Configuration Editor among editor windows is activated to show at the top of windows.

[Servo Parameter Editor]
This menu is available only when Servo Parameter Editor has been started from Main Menu. Servo Parameter Editor among editor windows is activated to show at the top of windows.

[Expanded Parameter Editor]
This menu is available only when Expanded Parameter Editor has been started from Main Menu. Expanded Parameter Editor among editor windows is activated to show at the top of windows.

[Terminate All Editors]
Terminate all editor windows running currently. If you have not saved an opened file, each editor shows the message to request saving.

[Help] menu
[Help Topics]
Show help topics.

[Logo]
Show HR Editor logo.

[Version]
Show HR Editor version.

Hide the menu bar

When the menu bar is visible, you can hide the menu bar to click the right button of the mouse on the toolbar (a bar on which buttons is located) and select “Menu bar” that has a checked mark.

Similarly, if you want to show the menu bar again, click the right button of the mouse on the toolbar and select “Menu bar” that does not have a checked mark.
3. Main Menu

3.2. [File]-[New Project]

[File]-[New Project] opens a new project.

If you have already opened the project that have been changed, the message is shown whether you save the current project or not. When you select [Yes], Main Menu saves the current project and opens a new project.

A new project contains the default settings such as the directory for robot data (position data, S.G data, S.P data), the parameters for communication port, the communication conditions for a robot and STC. This default settings is defined in ‘Default.hrp’ file that is located at the system directory (the installation directory) of HR Editor.

You can changed the default settings to modify ‘Default.hrp’ file by using a text editor such as Word Pad. To save ‘Default.hrp file is recommended before you modify it.

The format of ‘Default.hrp’ file is the same as ‘harl.dat’. (See “Parameter File ‘harl.dat’”.)

If you open a new project and use this project later, to save the project by [Save Project As] is necessary.

The saved project file is named with “.hrp” suffix.

You can also create a new project to click button in the tool bar.
3. Main Menu

3.3. [File]-[Open Project]

[File]-[Open Project] opens a project file already existed. Suffix of a project file is “.hrp”.
If the current opened project has been changed, the message whether you save the project or not is shown.

You can also open a project to click button in the tool bar. If HR Editor detects the opening file invalid, the following message is shown and you cannot open this file.

HR Editor System Directory Illegal

Main Menu detects the HR Editor system directory when Main Menu started. When you open a project file, if the system directory set in the project file is not the same as the directory that was detected when starting, the following message is shown.

When you click [OK], Main Menu use the detected directory instead of a setting in the project file. You need to save the project to write the detected directory to the project file. If you open a new project or open the other project or exit Main Menu without saving the project, the message that asks whether you save the project or not is shown.

3.4. [File]-[Update Project]

[File]-[Update Project] overwrites the current project to a project file. You cannot select this function if you have not executed [Save Project As] after a new project is opened.

You can also update a project to click button in the tool bar.
3.5. [File]-[Save Project As]

[File]-[Save Project As] saves the current opened project as a specified file. For example, you can use this function when you want to save the new project or save the current opened project to another file.

You can also save a new project as the specified name to click button in the tool bar. If the file suffix (extension) of the specified file is not the same as “.hrp”, the following message is shown and you cannot save this file.

3.6. [File]-[Position]

The dialog window to select opening a new file or an existing file as follows.

After [Existing File] selected, the file-selecting dialog is shown. Select the file to open and then Position Editor starts to open it.

You can terminate this dialog to click [X] button at the upper right of the dialog.

You can see “Start Editing of Position Data” in detail. If Position Editor has already run, you cannot select this.

You can also start Position Editor to click button in the tool bar.

3.7. [File]-[S.G. Data]

The dialog window to select opening a new file or an existing. After file selection, S.G. Editor (SgEdit.exe) starts.

See “[File]-[Position]” about this dialog window.

You can see “Start Editing of Robot Settings Data” in detail. If S.G. Editor has already run, you cannot select this.

You can also start S.G. Editor to click button in the tool bar.
3.8. [File]-[S.P. Data]

The dialog window to select opening a new file or an existing. After file selection, S.P. Editor (SpEdit.exe) starts.
See “[File]-[Position]” about this dialog window.

You can see “Start Editing of Robot Settings Data” in detail.
If S.P. Editor has already run, you cannot select this.
You can also start S.P. Editor to click button in the tool bar.

3.9. [File]-[Configuration]

The dialog window to select opening a new file or an existing. After file selection, Configuration Editor (CfgEdit.exe) starts.
See “[File]-[Position]” about this dialog window.

You can see “Start Editing of Robot Settings Data” in detail.
If Configuration Editor has already run, you cannot select this.
You can also start Configuration Editor to click button in the tool bar.

HR Editor supports configuration data only for HNC-5XX type controllers.
When you have selected HNC-1XX,2XX,3XX,544 as the controller type in [Set Up]-[Project Settings]-[COM Format], the following message will be shown and then Configuration Editor will be started.
3. Main Menu

3.10. [File]-[Servo Parameter]

The dialog window to select opening a new file or an existing file. After file selection, Servo Parameter Editor (SvoEdit.exe) starts.

See “[File]-[Position]” about this dialog window.

You can see “Start Editing of Robot Settings Data” in detail.
If Servo Parameter Editor has already run, you cannot select this.

You can also start Servo Parameter Editor to click button in the tool bar.

In file selection dialog, the following files are shown according to the setting of robot controller type specified in [Set-up]-[Project Settings]-[Com Format].
- If “Robot Directly” and “HNC-1XX,2XX,3XX,544” selected, Memory Data Files that have a file extension “.mem” will be shown.
- If “Robot Directly” and “HNC-5XX” selected, Servo Parameter Files that have a file extension “.svo” will be shown.

3.11. [File]-[Expanded Parameter]

The dialog window to select opening a new file or an existing file. After file selection, Expanded Parameter Editor (EprEdit.exe) starts.

See “[File]-[Position]” about this dialog window.

You can see “Start Editing of Robot Settings Data” in detail.
If Expanded Parameter Editor has already run, you cannot select this.

You can also start Expanded Parameter Editor to click button in the tool bar.

HR Editor supports expanded parameter only for HNC-5XX type controllers.
When you have selected HNC-1XX,2XX,3XX,544 as the controller type in [Set Up]-[Project Settings]-[COM Format], the following message will be shown and then Expanded Parameter Editor will be started.
3.12. [File]-[Exit]

[File]-[Exit] terminates HR Editor.
If Position Editor is running, you must terminate it. Also, if S.G. Editor, S.P. Editor, Configuration Editor, Servo Parameter Editor, Expanded Parameter Editor or Robot Data Communication is running, you must terminate those executions. If those executions have not terminated, following message that demands to terminate the execution is shown.
You can terminate all editors to select [Window]-[Terminate All Editors] in Main Menu.

If you have changed the current project, the message that asks whether you save the project or not is shown.
When opening a project file, the system directory set in a project file is not the same as the directory that Main Menu was detected and then you have not saved the project. After this, when you terminate HR Editor, the message is shown. (See “[File]-[Open Project]”.)

When [Yes] selected, a saving dialog window is shown and input a file name to save the project. When [No] selected, HR Editor is terminated without saving the project. [Cancel] selected, termination is canceled.
After saving the project, the following message that confirms termination of HR Editor is shown.

[Yes] selected, HR Editor is terminated.
[No] selected, termination is canceled.
3.13. [Memory Card]-[Open File]

The dialog window to select a memory card file is shown. If the memory card is invalid or not inserted to the slot, the error message is shown.

Select and click an icon of a file, or select a file and click [Open] button. Then an editor application related to the file type starts to open the selected file.

3.14. [Memory Card]-[Memory Card Information]

Some information for the memory card is shown.

Click [Detail] button at the upper right in this dialog to show file size and file type in the file list. You can see the management data of the memory card in [Memory Card Information].
3.15. [Memory Card]-[Memory Card Check]

The following dialog window is shown.

Select a socket. Normally, the lower socket is “Socket #1” and the upper socket is “Socket #2” in the computer that has two card slots. Click [Start] button to start checking. Click [Cancel] to terminate this dialog window.

The validity of the memory card is checked as follows.
- Formatted or not.
- FAT testing.
- Check-sum testing.

The checking result is shown after the execution of checking. In case of the memory card valid, The message “Memory card OK.” will be show.

3.16. [Memory Card]-[Delete File]

The dialog window to select a memory card file is shown. If the memory card is invalid or not inserted to the slot, the error message is shown.

Click [Cancel] button to terminate this dialog window.
Select a file and double-click the icon of the file, or select a file and click [Delete] button. Then the confirmation window will be shown as follows.

Click [Yes] button to execute deleting the file. Click [No] button to cancel deleting. After the execution of deleting, the file list is renewed of the dialog window.

3.17. [Memory Card]-[Memory Card Format]

The following dialog for memory card formatting is shown.

Click [Cancel] button to terminate this dialog window. Click [Memory Card Information] button to show the memory card information. If the memory card is inserted to the card slot, the socket of this card is automatically selected.

Select formatting size. You must select the formatting size less than the capacity of the memory card. After [Start] button clicked, the following confirmation message will be shown.

Click [Yes] button to start formatting. Click [No] button to quit without deleting. If you have specified the formatting size more than the capacity of the memory card, the following message is shown.
Specify the proper size and retry formatting. When the formatting is correct, the following message is shown.

![Memory Card Format](image)

3.18. [Memory Card]-[Binary Compare]

You can execute binary comparison of two files saved in the memory card. Binary comparison means to compare data of the files for each byte.

After the file-selecting dialog is shown, select the first file. Then the following message is shown.

![Select Second File](image)

If you want to compare with another memory card, exchange the memory card and then wait for about 10 seconds. And click [OK] button.

If you want to use the current card, click [OK] button immediately.

After the file-selecting dialog is shown, select the second file to start comparison. If the file types of two files are different, the error message is shown and the comparison cannot be executed. In this case, the second file selection dialog is automatically shown again to select the second file with proper types.

After comparison, the result dialog will be shown.

![Memory Card File Binary Compare](image)

In case that the two files are different, Result shows the byte position and the hexadecimal dump of different data.
3.19. [Memory Card]-[Dump]

The following dump dialog is shown.

Note) The following figure is the sample after the dump executed once.

You must select [Dump Type] whether data dump of a file or memory dump of the memory card.
In case of [File Dump], select a file in the memory card by [Browse] button.
You must set [Dump Area] that contains the start position (unit of byte) of dump area and the dump size. Zero (head position of dump area) has been set in the start position and 1024 bytes is set in the dump size as default.
Click [Start Dump] button to show the result of dump.
If you have set the start position value over the size of the file or the memory card, the error message is shown.
If the value of the start position + the dump size is over the size of the file or the memory card, the result shows the dump list of the size limit.
During the dump execution,
- you can see the dump progress by the progress bar.
- after dump started, [OK] or [Cancel] button is changed to [Abort] button. You can stop the dump execution to click [Abort] button. The result shows the dump list till the dump aborted.
- you cannot click [Print], [Save As] and [Copy] button.
The dump result shows 16 bytes data by one text line. A text line contains the following items.
- Address described by eight-digit hexadecimal expression.
- 16 bytes binary data by two-digit hexadecimal expression for each byte.
- 16 bytes ASCII characters are converted from binary data. Binary data that cannot be represented by ASCII characters are shown as periods.

Note) Word length data of two bytes is shown as the upper and the lower byte is reversed.

After the dump execution, you can
- copy the dump result to clipboard by [Copy] button.
- save the dump result as a text file by [Save As] button.
- print the dump result by [Print] button.
3.20. [Maintenance]-[Terminal]

[Maintenance]-[Terminal] shows the communication terminal window. In case the terminal window has been already opened or Robot Data Communication has been running, you cannot select this function.

You can also show the terminal window to click button in the tool bar.

![Terminal Window]

[Mode] Menu

There is two input modes on the terminal window. These modes is switched to select [Mode]-[HRCS Protocol] or [Mode]-[Terminal]. Default mode is [HRCS Protocol]. And the current mode is shown in the status bar.

(1)HRCS protocol
You can communicate with a robot or STC by HRCS (Hirata Robot Communication System) protocol. The input characters are sent when you enter the return key adding STX to the top of the characters and ETX, LRC to the end of them. After sending data, the window is waiting for the response from a robot or STC. When the response received, the window shows the response data. In case of response not received and time out, the window shows an error message.

(2)Terminal
This is a pure terminal mode in which the entered one character is sent by each key input. The window checks receipt after each input and if there is receive data, the window shows it.

Input Hex Value on HRCS Protocol Mode

In case of HRCS protocol mode, you can input data by hex value and send it to treat binary data such as the control code.

Two characters after "^" are regarded as two digits of hexadecimal expression and one byte expressed by these two digits is sent. For example, "^FB" is regarded as hexadecimal FBH to send. "0" to "9" and "A" to "F" are allowed for hexadecimal expression. If you input another expression, the error message is shown.

In case the hex value of one byte is 0H to FH, you must input "0" at the top of hexadecimal expression ("^0A" for example)

If you input more than three characters for hexadecimal expression, two characters at the top of characters are effective and characters after third position are sent by those character code. For example, "^1BE" sends 1BH and 45H (character "E"). If you want to send character "^", you must input "^5E" as hexadecimal expression.

This hexadecimal expression is available in either view types, [View]-[Control Code Name] or [View]-[Hex Data].
In case of terminal mode, you cannot input by hexadecimal expression. Key input code is sent through.

[Edit] Menu

(1)[Edit]-[Copy To Clipboard]
All text of the window is copied to the clipboard.

(2)[Edit]-[Save To File]
The dialog box to save is shown and input a file name to save all text of the terminal window to the specified file.

(3)[Edit]-[Edit And Send]
If you move a cursor to the top of HRCS command already sent and select [Edit]-[Edit And Send], the following window is shown.

![Edit Command and Send]

You can change the shown command or do nothing and select [Send], the current shown command is sent. It is effective to send the long size command already sent.

(4)[Edit]-[HRCS Command History]
This shows history of commands that have been sent in HRCS protocol mode.

![HRCS Command History]

- Select a command in the history and then double-click it or click [Send] button to send the command again.
- Select a command in the history and then click [Delete] button to delete the command.
- If [Delete All] button clicked, delete all commands in the history after confirmation dialog shown.

[View] Menu

(1)[View]-[Clear View]
All text of the terminal window is deleted.

(2)[View]-[Control Code Name] or [Hex Data]
You can select types of displayed format by the control code name such as “STX”, “ETX” or “02”, “03” as hexadecimal expression.
In case of [Control Code Name], sending or receiving data that cannot be expressed by character is shown as “[Code Name]” and in case of [Hex Data], it is shown as
“[^Hexadecimal Expression]”.
Example

<table>
<thead>
<tr>
<th>Hex value 02H</th>
<th>Control Code Name</th>
<th>Hex Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[STX]</td>
<td>[^02]</td>
</tr>
</tbody>
</table>

[Tool] Menu

(1)[Tool]-[Ascii Code]
This shows the table of ascii codes.
Click the button (x mark) in the upper right corner to terminate the window.

(2)[Tool]-[STC Error Code]
This shows the table of error codes in the error response from STC by HRCS command.
Click the button (x mark) in the upper right corner to terminate the window.
An error response from STC has the following format.

```
[STX]!_HHmessage[ETX][LRC]

HH: Error code by hexadecimal expression
message: String of error information
```

(3)[Tool]-[Robot Error Code]
This shows the table of error codes in the error response from a robot by HRCS command.
Click the button (x mark) in the upper right corner to terminate the window.
An error response from a robot has the following format.

```
[STX]Esssseeaaaa[ETX][LRC]

ssss: Robot status (4 characters)
ee: Error code by hexadecimal expression
aaaa: Error axis information (for only existing axis)
```

See “HRCS Robot Error Format”.

Display Communication Parameter

Current settings of RS232C communication parameter is shown in the status bar by the following format.

```
PC COMa:ssss,d,p,b
```

a: COM number of the computer (1 or 2)
ssss: Baud rate (38400,19200,9600,4800)
d: Data length (8,7)
p: Parity (E,O,N)
b: Stop bits (1,2)
3. Main Menu

3.21. HRCS Robot Error Format

If a robot responds with an error, the receiving data has the following format in which the top character is “E”:

```
| STX | E | S4 | S3 | S2 | S1 | E1 | AX | AY | AZ | AW | AR | AC | ETX | LRC |
```

Robot Status

Robot Status contains 4 characters. Each character expresses the hexadecimal value that means the following bits of byte data.

- **S1**: On-Line mode, Manual mode, Auto mode
 - 7: On-Line mode
 - 6: Manual mode
 - 5: Auto mode
- **S2**: SEQ mode, Interlock, ES (Emergency Stop)
 - 7: SEQ mode
 - 6: Interlock
 - 5: ES (Emergency Stop)
- **S3**: Z-axis zone (safety zone), Positioning completion, A-CAL completion
 - 7: Z-axis zone (safety zone)
 - 6: Positioning completion
 - 5: A-CAL completion
- **S4**: Command executing
 - 7: Command executing
 - 6: Command executing now

Note)
- Manual mode means KEY-IN, RO-TEACH, LI-TEACH or CHECK mode.
- In the figure, invalid bits hold “0”. Valid bits hold “1” when the status described in the figure has occurred.

Example:
- S1 = "4" = 34H --- Auto mode.
- S2 = "6" = 36H --- ES and interlock on.
- S3 = "6" = 36H --- A-CAL and positioning completed.
- S4 = "4" = 34H --- Command executing now.

Error Code

Error code contains two characters by hexadecimal expression. To see details, select [Tool] [Robot Error Code] in the Main Menu.
Error Axis Information

Error axis information contains characters that have the size corresponding to the number of robot axes. Error axis information shows the detail which axis and what kind of error. Some kind of error does not contain error axis information. In this case the error axis information holds “0”. Cases that the error axis information is available are as follows.

(1) When A-CAL error (error code 20H), the error axis information is set by “0” to “7”.
 - “0” : OK
 - “1” : Origin sensor not found when moving to origin.
 - “2” : Origin sensor not off. Cannot return to working area.
 - “3” : Limit sensor on when moving to origin.
 - “4” : Counter not zero.
 - “5” : Counter reset lower.
 - “6” : Counter reset upper.
 - “7” : Counter minus.

(2) When overrun (error code 51H), the error axis information is set by “0” to “3”.
 - “0” : OK
 - “1” : Origin side.
 - “2” : Overrun side.
 - “3” : Both side

(3) When positioning data out of limit (error code 64H), the error axis information is set by “0” to “2”.
 - “0” : OK
 - “1” : Lower side.
 - “2” : Upper side

(4) When servo error (error code 70H), the error axis information is set by “0” to “1”.
 - “0” : OK
 - “1” : NG

3.22. [Maintenance]-[Robot Data Communication]

[Maintenance]-[Robot Data Communication] starts Robot Data Communication (UpDown.exe) that can upload or download robot data. You can see “Start Uploading/Downloading”. If Robot Data Communication has already run, you cannot select this.

You can also start Robot Data Communication to click button in the tool bar.
3.23. [Set Up]-[Project Settings]

Project is managed to save the settings of file directories, communication port parameters, communication format to a project file. To save these settings as a project file, you can treat many program groups in the different conditions by selecting the project file.

In Main Menu, one project file is opened currently. To start Main Menu after installation, a new project is opened. The settings of a new project are defined in ‘Default.hrp’ file. You can customize the settings of a new project to edit ‘Default.hrp’ by a text editor. The format of ‘Default.hrp’ file is the same as ‘harl.dat’ file. (See “Parameter File harl.dat”.)

You can change the current settings by [Setup]-[Project Settings]. Contents of settings are as follows. And you can see and change the settings by switching tabs.

(1) Directory
You can set the directory for work files, source files, header files, macro files, make files and robot data files. And you can set the file path of a using editor to edit HARL-III programs. Refer to “[Set Up]-[Project Settings]-[Directory]” about operation.

(2) RS232C Port
You can set parameters of RS232C port of a computer that communicates with a robot or STC. You can specify speed, data length, stop bits, parity and you can select a serial port of PC to communicate. Refer to “[Set Up]-[Project Settings]-[RS232C Port]” about operation.

(3) COM Format
You can set communication conditions as follows.
• Via STC or robot directly
• STC number (Station number)
• Robot number
• COM number in STC in case of via STC
• Robot controller type
• Communication format
• Command retry number in case of communication error
• Wait timer for response
Refer to “[Set Up]-[Project Settings]-[COM Format]” about operation.

(4) STC COM Port
Through Mode of STC is used when the computer communicates with a robot via STC. You can set various conditions of STC COM in the case of using the communication of Through Mode.
• RS232C parameters of STC COM (speed, data length, parity, stop bits)
• Using or not using the current RS232C parameters set in STC
• Robot number and robot controller type
• Stopping or not stopping jobs during the communication
• Waiting timer till the HARL-III program releases STC COM in the case of not stopping jobs during the communication.

Refer to “[Set Up]-[Project Settings]-[STC COM Port]” about operation.

You can read and use the settings after you save this parameters and conditions as a project file (suffix “.hrp”) to select [File]-[Update] or [File]-[Save As]. When the next starting Main Menu, the recent used project file is read automatically.
3. Main Menu

3.24. [Set Up]-[Project Settings]-[Directory]

You can see and set the directories for HR Editor system files and robot data files.

You can click button in the toolbar as the same function of selecting from the menu.

You cannot change the HR Editor system directory. The system directory shown in this window is detected when Main Menu started. (See “[File]-[Open Project]”)

Note) Robot data files means as follows.
(1) Position data file (suffix “.pos”)
(2) S.G. data file (suffix “.sg”)
(3) S.P. data file (suffix “.sp”)
(4) Configuration file (suffix “.cfg”)
(5) Servo parameter file (suffix “.svo” or “.mem”)
(6) Expanded parameter file (suffix “.epr”)

Enter the directory name and click [OK]. If the specified directory is not found, the message is shown to create it.

Click [Browse] to show the browsing window and you can select the directory.

Note) HR Editor never uses [Work Files], [Source Files], [Header Files], [Make Files], [Macro Files] and [Source Editor] shown in this window.
Double click the folder to select the directory. Selected directory is shown at the lower of the window. Confirm the directory name and click [OK] to set the directory for robot data files.
3.25. [Set Up]-[Project Settings]-[RS232C Port]

You can set parameters for the RS232C communication port (COM port) of a computer.

You can click button in the toolbar as the same function of selecting from the menu.

You must set parameters to correspond the computer settings to a robot or STC when you use [Maintenance]-[Terminal] or [Maintenance]-[Robot Data Communication]. See “Connection with Robot Controller” about the connection with a robot or STC.

First, you must select a serial port of the computer in “Select PC COM”. For the standard computer, COM1 or COM2 is available. If you select a PC COM that Windows system cannot detect, the following message is shown.

According to the message, check available PC COM to open Device Manager of Windows. Without this message, then select the setting for speed, data length, stop bit and parity of the selected PC COM. Click [OK] to enable the selected settings. If you click [Cancel], the settings are not change.
3. Main Menu

Standard settings for the communication with a robot

When communicated with a robot directly, standard settings are as follows.

- **Data length**: 7 bits
- **Stop bit**: 1 bit
- **Parity**: Even
- **Speed**: Choose among 300, 600, 1200, 2400, 4800, 9600, 19200, 38400(bps)
 - Standard setting as follows
 - HNC-1XX, 2XX, 3XX, 544: 9600bps
 - HNC-5XX: 19200bps

You must set speed that is the same as the value set in S.G. data [ORIGIN]–[SET-UP SYSTEM]–[TRANSFER RATE] of the robot controller.

You can check the robot setting by teach pendant as follows.
1. Push [FUNC/HIGH]+[s.g/7].
2. Push [mot/3].
3. Push [cal/1].

Note) Power OFF/ON of the robot controller is needed after changing communication speed by teach pendant.

Standard settings for the communication with STC

When communicated with a robot via STC, standard settings are as follows.

- **Data length**: 8 bits
- **Stop bit**: 1 bit
- **Parity**: Non
- **Speed**: Choose among 1200, 2400, 4800, 9600, 19200, 38400(bps) according to the dip switch set in the STC. In case STC version is less than 5.20, STC setting is 9600 bps and in case STC version is more than 5.30, STC setting is 38400. Following figure shows the relation between the dip switch and the speed.

(1) Computer connected with STC COM9 (Programming port)

- **Speed**: According to the dip switch #4 and #5 set in STC. Following figure shows the relation between the dip switch and speed.

```
          1  2  3  4  5  6  7  8
ON         | | | | | | | |
OFF        | | | | | | | |
```

- **Data length**: 8 bits
- **Stop bit**: 1 bit
- **Parity**: Non
(2) Computer connected with STC COM8 (Host port)

- Speed: According to the dip switch #1 and #2 set in STC. Following figure shows the relation between the dip switch and speed.

<table>
<thead>
<tr>
<th></th>
<th>less than 5.20</th>
<th>more than 5.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>1200bps</td>
<td>4800bps</td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2400bps</th>
<th>9600bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4800bps</th>
<th>19.200bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>9600bps</th>
<th>38.400bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Data length: 8 bits
- Stop bit: 1 bit
- Parity: Non

Set default

To select a connected destination in “Set Default”, standard settings of the selected equipment are automatically set.

You can set the communication conditions for a robot or STC.

You can click button in the toolbar as the same function of selecting from the menu.

![Image of the HarITst Project Settings window]

Connection Type

You can select the communication with a robot via STC or directly with a robot. The following settings are available to select “Robot Directly”:

- Robot Number
- Robot Controller Type

The following settings are available to select “Via STC”:

- STC Number
- STC COM Number

After you have changed connection type, if the current RS232C settings are different from the standard settings of selected connection type, the following message is shown.

![Image of the message window]

Select [Yes] to change the current RS232C settings to default automatically.
Robot Number

You cannot change the robot number when communicated with a robot via STC. You can set it only when communicated with a robot directly. You can specify 0 through 999 as the value of robot number.

(1) Communication with a robot in which the robot number is available.
In case of the communication with a robot in which the robot number is available, you must set the robot number whether via STC or robot directly and whether one-for-one or one-for-N communication. If the specified number is not the same as the target one or the communication is without the robot number, the communication time out error will occur since the robot never responds. You must specify the value of the robot number that is set in S.G. (system generation) data [MAINTENANCE]-[MAINTENANCE DATA]-[STATION NO.].

(2) Communication with a robot in which the robot number is not available.
In case of the communication with a robot in which the robot number is not available, check [Without robot no.]. If you specify the robot number, the command error will be received.

Note) A HNC-5XX (max. 6 axes) type controller always needs the robot number.
A standard HNC-1XX,2XX,3XX,544 (max. 4 axes) type controller cannot use the robot number. But some special type of HNC-1XX,2XX,3XX,544 needs it.

Robot Controller Type

You cannot change the robot controller type when communicated with a robot via STC. You can set it only when communicated with a robot directly. According to the robot controller type to access, the communication format of position, S.G., S.P. data is different. If the specified controller type is not matched, an error may occur when communication or invalid data may be uploaded/downloaded.

When the mouse pointer moves on a option button of controller type, detailed model names of available controllers will be shown as the tool-tip window. When you select HNC-1XX,2XX,3XX,544 (4 axes max.), the specified robot number is deleted automatically, but you can enter it again.

If you select HNC-5XX without a robot number, the robot number is proposed automatically showing the following message. Proposed number is not suitable, change it.

After [OK] clicked, the message dialog that asks to change RS232C settings to HNX-5XX default will be shown.
When you select HNC-5XX, “HNC-5XX Standard” is selected automatically. “HNC-5XX for semiconductor” is the type that holds the different S.G. data definition from “HNC-5XX standard” type. “HNC-5XX with URL” is the type that holds the different position data from
“HNC-5XX standard” type. URL is robot parameter that is contained in position data of a robot. URL defines the pose of arms of a SCARA type robot. (See “Input Position Data”.) There are very few robots of these types. So, you may ordinarily specify “HNC-5XX standard” type.

STC Number (Station Number)

You cannot change the STC number when communicated with a robot directly. You can set it only when communicated with a robot via STC.

You can specify 0 through 999 as the value of STC number.

1. Communication with more than two STC by multiple drop
 In case of the communication with more than two STC by multiple drop, you must specify the target STC number by keyboard input or scrollbar. If the specified STC number is not the same as the target one, the response is never received and the communication time out error will occur. If you set the communication without STC number, all STC responds and it will be unexpected situation for the communication.

2. Communication with only one STC
 In case of the communication with only one STC, Communication is possible whether you set the STC number or you select [Without STC no.] that does not use the STC number in the communicated command.

You can check the target STC number to operate as follows in Terminal window.

1. Connect the target STC by one-for-one.
2. Open [Maintenance]-[Terminal] and input “RN” + return on the HRCS protocol mode.
3. STC responds with the STC number that contains three decimal character.

STC COM Number

You cannot change the STC COM number when communicated with a robot directly. When communicated with a robot via STC, you must specify the COM number in STC that connected with the target robot. If the specified COM number in STC is invalid, the communication time out error will occur or an another robot will response through the different COM port in STC.

STC COM Settings

You cannot set the STC COM conditions when communicated with a robot directly. You can set it only when communicated with a robot via STC.

You can set various conditions of each STC COM port in the case of using the communication of Through Mode.

See “[Set-up]-[Project Settings]-[STC COM port]” about the details of settings.

Error Retries

Set the maximum number to retry sending the HRCS command when the communication error occurs. If the communication cannot be successful in spite of retrying the specified times to send, the error message is shown to select the process to retry, abort or ignore.

The recommended retry number is at most 5. When the communication error occurs even though the setting is more than 5, there is a possibility that the cable or the hardware is wrong.

[Maintenance]-[Terminal] uses this value on HRCS protocol mode.
Wait Timer Value

Set the waiting timer by second that has a period from the HRCS command sent to the response received. If there is no response for specified period, HR Editor retries to send the command.
The recommended waiting timer value is at most 5 sec.
[Maintenance]-[Terminal] uses this value on HRCS protocol mode.

Message Format

STX-ETX,LRC type is only available now. You cannot change this.
3.27. [Set Up] -[Project Settings]-[STC COM Port]

You can not select this function in the case of selecting the direct communication with a robot.

You can click \[\] button in the toolbar as the same function of selecting from the menu.

Also you can select this function to click [STC COM Settings] button enabled when via STC in [COM Format] tab.

You can set various conditions of each STC COM port in the case of using the communication of Through Mode.

![STC COM Port Settings](image)

Selection of STC COM

Click [STC COM n] tab to show the setting of selected STC COM port.

RS232C Parameters

You can set RS232C parameters of the selected STC COM for the communication using Through Mode.

If you check [Using current parameters in STC] box to ON, STC does not use the parameters of this window but uses the current parameters in STC when communicated by Through Mode.

The value of the current parameters in STC is as follows.

- If the COM has not been opened yet by the HARL-III program, the RS232C parameters remains unchanged from power ON with the following value.
 - COM8 : 9600 (or 38400) bps, 8 bits, non parity, 1 stop bit
 - COM1,2,3 : 9600 bps, 7 bits, even parity, 1 stop bit

- If the COM has been opened, the current RS232C parameters has the value described at the OPEN statement.

Note

1. You can check the current RS232C parameters for the COM in STC by the following operation.

2. Enter the following command.
 RF#COM-Number[return] Example) RF#2

3. The current RS232C parameters of the specified COM are shown as follows.
 Speed Parity Data-length Stop-bits Example) 9600 E 7 1

If you check [Using current parameters in STC] box to ON, you cannot set [Speed], [Data Length], [Stop Bits] and [Parity] in this window.

If you check [Using current parameters in STC] box to OFF, STC uses the RS232C parameters of this window when communicated by Through Mode.

When Through Mode is terminated, the STC resumes the RS232C parameters of the COM and then its value is the same before Through Mode.

You must set the value to [Speed], [Data Length], [Stop Bits] and [Parity] corresponded with a robot connected by the STC COM.

Note 2) If [Speed], [Data Length], [Stop Bits] or [Parity] is not corresponded with a robot, the computer cannot receive the response from a robot.

COM Name
Enter the any string that represents the STC COM. The number of characters has no limit. It does not care if the string is not entered.

Robot Number
You can specify 0 through 999 as the value of robot number.

(1) Communication with a robot in which the robot number is available.
 In case of the communication with a robot in which the robot number is available, you must set the robot number whether via STC or robot directly and whether one-for-one or one-for-N communication. If the specified number is not the same as the target one or the communication is without the robot number, the communication time out error will occurs since the robot never responds.

(2) Communication with a robot in which the robot number is not available.
 In case of the communication with a robot in which the robot number is not available, check [Without robot no.]. If you specify the robot number, the command error will be received.

Robot Controller Type
According to the robot controller type to access, the communication format of position, S.G., S.P. data is different. If the specified controller type is not matched, an error may occurs when communication or invalid data may be uploaded/downloaded.

If you select [Other Device] or [Not Used], the warning message will be shown when you upload or download the robot data using the STC COM.

Communicating without stopping jobs
[Communicating without stopping jobs] is the common setting for all COMs.

If you check [Communicating without stopping jobs] box to ON, the communication of Through Mode is executed without stopping jobs in STC.

The conflict of COM access between the computer using Through Mode and HARL-III program running in STC is solved as follows.
 • When the computer starts to communicate with the COM using Through Mode, in case that the HARL-III program does not communicate with the COM, STC is transferred to Through Mode immediately. After this, when the HARL-III program is going to communicate with the COM, the execution of the communicating step is suspended. The
execution of this step will start when Through Mode is terminated.

- When the computer starts to communicate with the COM using Through Mode, in case that the HARL-III program has already communicated with the COM, the computer waits for the COM released by the HARL-III program during the time set in [STC COM Released Timer]. If the communication with the COM by the HARL-III program is terminated within this time, the computer starts to communicates with the COM using Through Mode. If the communication with the COM by the HARL-III program is not terminated within this time, the computer abort to communicate with the COM using Through Mode.

If you check [Communicating without stopping jobs] box to OFF, when the computer starts to communicate with the COM using Through Mode, all the jobs will be stopped immediately. And all the jobs restart at the first step (step number zero) when the communication of Through Mode is terminated.

STC COM Released Time

[STC COM Released Time] is the common setting for all COMs. When [Communicating without stopping jobs] check box is OFF, you cannot set this parameter. When [Communicating without stopping jobs] check box is ON, you can set the waiting timer for the COM released by the HARL-III program in the case of the communication using Through Mode. You must specify the value of seconds as more than the time that the one step of HARL-III program takes when the step communicates with a robot. For example, in the case of the executing of one MOVE statement takes five seconds maximum, you must specify six seconds. You can specify 5 through 99 seconds to this parameter.

3.28. [Set Up]-[Robot Stroke]

The following robot stroke setting dialog is shown.

![Robot Stroke Dialog](image)

You can set a robot stroke using by each editor application as default. You can also set a robot stroke in each editor application. An editor selects a robot stroke set in this dialog automatically when a file opened. But you can change it temporarily when you open a file by an editor.
3.29. [Set Up]-[Printer]

[Set Up]-[Printer] shows the setting window for the printer. This window is the property setting window that is shown in the Windows control panel for the usually used printer.

3.30. [Set Up]-[Language]

You can select the display language for HR Editor. Available language is Japanese or English.

![Select Display Language](image)

When the using language for Windows set by [Control Panel]-[Locale] is Japanese, you can select Japanese or English for HR Editor. When the Windows setting is not Japanese, you can select only English for HR Editor.

It is necessary for new language to exit HR Editor and restart.

This setting is written to “harl.ini” file in the HR Editor system directory. (See “harl.ini file”.)
3. Main Menu

3.31. [Set Up]-[Font]

[Set Up]-[Font] changes a displaying font in Main Menu.

Select the font in the list box, set the other settings such as [Font size], [Bold] etc. and click [OK].
These settings are not used by Position Editor, S.G. Editor, S.P. Editor and Robot Data Communication. These functions use fixed font as follows.

- Japanese --- MS Gothic, Font size=9
- English --- MS Sans Serif, Font size=9

This settings are not available if you exit and restart HR Editor. These settings are available only for current running of Main Menu of HR Editor.
If you want to change the font when HR Editor starts next, you must directly edit “harl.ini” file in the HR Editor system directory by using a text editor such as Word Pad. It is recommended that you save “harl.ini” file before you edit the file. (See “harl.ini file”.)
3.32. [Tools]-[Communication Test]

[Tools]-[Communication Test] tests the communication with a robot or STC. It examines RS232C port and checks the response to vary the communication parameters. You can see the testing patterns in the list view in order.

Note) You can customize the testing patterns to change ‘comtest.ini’ file. (See “comtest.ini file”.)

In [Select COM of computer], the PC COM number that is specified in the project settings is already selected. You can change PC COM number here.

When [Start Test] clicked, testing starts. If testing of the current pattern is OK, “OK” is shown in the “Result” column. If testing is NG, “NG” is shown in the “Result” column and an error information is shown in the “Error Information” column. In case of NG, testing of a next pattern is executed. Current testing status is shown as a message in the lower of the window.

[Cancel] button is enable only during testing. Click [Cancel] to abort testing. [OK] button is disable during testing.
STC or Robot Number Not Coincident

When the robot number is specified in [Set Up]-[Project Settings]-[COM Format], if the setting number is coincided with the STC or robot controller, all the testing patterns result in NG as receiving timeout.

The reason of this is that the STC or robot controller cannot respond in this situation. (This is the specification of one-for-N communication.)

If all the testing patterns are terminated as NG, the following window is shown.

In this window, specify the new STC or robot number and click [Start Test] to start the testing again with the new number.

This window can be opened to click [Change Number] button in the Communication Test window.

Termination of Testing

After testing is OK, testing is terminated and [OK] button is enable. [OK] button clicked, in case the RS232C parameters at which OK is detected is not the same as the current parameters set in the project settings, the following window is shown to confirm changing the current settings.
[OK] button clicked in this window, the current settings of the project is changed to the settings when the testing result is OK. The new settings is not saved automatically, so you need to save the new settings to a file by [File]-[Update Project] after [OK] button clicked.

[Change Setting] clicked, it is disable to change the current setting.
[Cancel] clicked, Communication Test is terminated without changing the current settings.

Note) After [OK] button clicked in the Communication Test window, if the detected RS232C parameter as testing OK is not allowed for a robot or STC, the following message is shown. In this case, there is a possibility of noise or hardware trouble of the robot, STC, the cable for communication.
3.33. ‘harl.ini’ File

File ‘harl.ini’ defines the language and the font of Main Menu of HR Editor. Main Menu (HrMenu.exe) reads this file when starting. File format is as follows.

<table>
<thead>
<tr>
<th>Section</th>
<th>Key</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[System]</td>
<td>Language</td>
<td>=Japanese</td>
<td>Display Japanese for Main Menu</td>
</tr>
<tr>
<td></td>
<td>Language</td>
<td>=English</td>
<td>Display English for Main Menu</td>
</tr>
<tr>
<td>[Font]</td>
<td>Name</td>
<td>=font name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size</td>
<td>=font size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bold</td>
<td>=True</td>
<td>Font is bold.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=False</td>
<td>Font is not bold</td>
</tr>
<tr>
<td></td>
<td>Italic</td>
<td>=True</td>
<td>Font is italic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=False</td>
<td>Font is not italic.</td>
</tr>
<tr>
<td></td>
<td>StrikeThrough</td>
<td>=True</td>
<td>Font is struck through.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=False</td>
<td>Font is not struck through.</td>
</tr>
<tr>
<td></td>
<td>UnderLine</td>
<td>=True</td>
<td>Font has underline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=False</td>
<td>Font does not have underline.</td>
</tr>
</tbody>
</table>
3.34. ‘comtest.ini’ File

‘comtest.ini’ file defines patterns of the communication test. Format is as follows.

timeout=1
retry=0
;
9600,8,N,1
9600,7,E,1
19200,8,N,1
19200,7,E,1
.
.
.

• timeout
 Specify the wait time for the response from a robot or STC by second unit.
 If a robot or STC cannot respond for the specified period, Communication Test retries to
 send a command as times as the number specified by “retry”.
 You cannot describe a space or tab before or after “=”.
 You must describe this sentence at the first line in the file.

• retry
 Specify retry number when a communication error occurs. If the first sending is failed
 without a response or with some error, Communication Test retries to send a command
 as times as the specified number. To retry the specified times is failed, the testing result
 is NG.
 You cannot describe a space or tab before or after “=”.
 You must describe this sentence at the first line in the file.

• RS232C parameters

 Speed, Data Length, Parity, Stop Bits
 Speed : 300,600,1200,2400,4800, 9600, 19200, 38400
 Data Length : 7, 8
 Parity : E, O, N
 Stop Bits : 1, 2

 Testing is executed in order of this descriptions.

• Comment
 Description after “;” is regarded as a comment.
 If you want to describe a whole line as a comment, “;” must be described at the head of a
 line.
4. Upload/Download Robot Data

4.1. Introduction to Uploading/Downloading

Robot Data Communication can upload robot data from a robot controller to a computer and it can download robot data from a computer to a robot. Robot data means position data, S.G.(System Generation) data, S.P.(System Parameter) data, configuration, servo parameter and expanded parameter.

HNC-5XX supports all robot data types, HNC-1XX,2XX,3XX,544 does not hold configuration and expanded parameter. Refer to “Introduction to HR Editor” about the relation between robot controller type and robot data type.

Uploading/Downloading starts by following operation.

1. Select [Robot Data Communication] of [HR-Editor x.x] group in the start menu of Windows.
2. Select [Maintenance]-[Robot Data Communication] in Main Menu of HR Editor.
3. Click button in Main Menu of HR Editor.

Function Structure of Robot Data Communication
4.2. Start Uploading/Downloading

Select [Robot Data Communication] of [HR-Editor x.x] group in the start menu of Windows or select [Maintenance]-[Robot Data Communication] in Main Menu of HR Editor. Then the main window of Robot Data Communication is opened.

Note) After installation of HR Editor, first starting of Robot Data Communication must be selected by Main Menu of HR Editor.

Note) The RS232C settings of the computer is shown in the window as following format. Confirm it for the communication with a robot or STC.

PC COMa:ssss,d,p,b
a : COM number of the computer (Typically 1 or 2)
ssss : Baud rate (38400,19200,9600,4800)
d : Data length (8,7)
p : Parity (E,O,N)
b : Stop bit (1,2)

If the setting is wrong, select [Exit] and set the correct parameters by [Set Up]-[Project Settings]-[RS232C Port] of Main Menu.

Warning of Robot Controller Type When Via STC Selected

In the case of selecting “Via STC” in [Set-up]-[Project Settings]-[COM Format] and selecting the type except a robot such as “Other Device” or “Not Used” in [Set-up]-[Project Settings]-[STC COM Port], the following message is shown and the “HNC-3XX” is selected automatically.
4. Upload/Download Robot Data

4.3. Upload from Robot to Computer

Uploading function will receive the robot data from the robot.

Robot Conditions When Uploading

The following robot status is recommended for uploading robot data.
- Without moving (Key-In mode the best)

Some type of robots cannot be uploaded when an error occurs such as emergency stop, servo error or overrun.

Setting of Uploading

1. Select [Upload] radio button in [Process Type].

2. Select [Controller type at uploading] radio button according to the target robot controller.

In case of selecting HNC-1XX,2XX,3XX,544 if the start address or the end address of position data is over 0999, the address is changed to 0999 automatically.

If you select HNC-1XX,2XX,3XX,544 type, you cannot select “Configuration” and “Expanded Parameter” as the data type. These data are only available for HNC-5XX type.

3. Select [Data Type] to upload.

 If you upload position data, click [Position Data] check box and input the uploaded data file name to [Position Data File Name] text box. Also you can select the file by the file selection dialog box to click [Browse...] button.

 And specify the range of position address. Default of the range is 0000 to 0999 for HNC-1XX,2XX,3XX,544 and 0000 to 3999 for other types. You can enter the start address to [Start Address] text box or the end address to [End Address] text box to change the range. Also you can change the range to move sliders. To click [<] or [>] button clicked, you can select the address with every 1000 points automatically.

To select [Tool]-[Read Position Address Range] menu, you can read the range of position addresses defined in the robot controller, and you can set the value of [Start Address] and [End Address] automatically.
If you upload other data, click the check box of other data and input the uploaded data file name to [Data File Name] text box. Also you can select the file by the file selection dialog box to click [Browse...] button. When you have selected HNC-1XX,2XX,3XX,544, you must specify ".mem" as the file extension. When HNC-5XX selected, specify ".svo".

In case of servo parameter, when you have selected HNC-1XX,2XX,3XX,544, you must specify ".mem" as the file extension. When HNC-5XX selected, specify ".svo".

If you have already specified the file name to the other text box, the suggested file name with the modified suffix is automatically shown in the text box of the selected data. You can select more than two data types at once. In this case, the robot data will be uploaded in the following order: position data -> S.G. data -> S.P. data -> configuration -> servo parameter -> expanded parameter.

4. Click [OK] after setting 1. - 3. And the confirming dialog box is shown. Check the contents of the message. You can see the hidden message to scroll.

Click [OK] button to start uploading robot data and click [Cancel] to cancel uploading. If you want to change the communication conditions such as robot number, click [Set Conditions]. See "Change Connection Conditions" about the settings. After [OK] button clicked, various checking will be executed as shown below.
4. Upload/Download Robot Data

Checking File Name Extension of Servo Parameter

• After HNC-1XX, 2XX, 3XX, 544 selected, if the specified extension of file name is not “.mem”, the following message is shown.

![Robot Data Communication](image1)

• After HNC-5XX selected, if the specified extension of file name is not “.svo”, the following message is shown.

![Robot Data Communication](image2)

Click [OK] button and then specify the correct file name extension again.

Checking Robot Configuration Mode

In case of HNC-5XX robot, there is a restriction of uploading data types whether the connected robot is currently under configuration mode or not.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Configuration Mode</th>
<th>Not Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position data</td>
<td>Cannot be uploaded</td>
<td>Can be uploaded</td>
</tr>
<tr>
<td>S.G./S.P. data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded parameter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before the execution of uploading, HR Editor checks the current configuration mode of the robot and if the specified data cannot be uploaded, the following message will be shown.

![Robot Configuration Mode Check](image3)

Click [OK] button to abort the execution of uploading.

And then in main window, selected check boxes that cannot be uploaded will be off automatically.

Checking Robot Version
When uploading configuration, servo parameter or expanded parameter, HR Editor checks the ROM version of the connected HNC-5XX robot before the execution of uploading. These data types are available only to a specific version or later.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>HNC-5XX ROM Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>5.02.008M or later</td>
</tr>
<tr>
<td>Servo parameter</td>
<td>5.02.007 or later</td>
</tr>
<tr>
<td>Expanded parameter</td>
<td>6.02.008T or later</td>
</tr>
</tbody>
</table>

If the detected ROM version is older than one described in this table, the following message will be shown.

Click [Yes] to start uploading.
Click [No] to exit uploading.

Execution of Uploading

After you click [OK] button in the confirming window and then the some checking procedures are detected as good, uploading starts and the progress window is shown.

When uploading position data, you can check the uploading process by the progress bar and
the current uploading address of position.

When uploading S.G. data or S.P. data, you can check the uploading process by the text box in which uploading data is shown.

When uploading configuration, servo parameter or expanded parameter, you can check the uploading process by the progress bar and the text box in which uploading data is shown.

Completion of Uploading

After uploading is completed, all messages of each data will become “Data uploading completed.”. Then the [Stop] button will change to [Retry] button and [Abort] button will be enabled.

Stopping to Upload

Click [Stop] button to stop uploading. When stopped, the data already uploaded has been saved to the specified file. Click [Retry] to restart uploading or click [Abort] to go back the main uploading/downloading window.

Note) [Stop] button or [Retry] button is toggled. When uploading, the button is available as [Stop] and when stooped, it is available as [Retry].
4. Upload/Download Robot Data

Uploading Error

(1) No response from the robot controller
If there is no response from the robot during uploading, the following message will be shown.

Confirm the value of RS232C port, COM format and STC COM port in the project settings and check the cable. If you have selected to use the robot number, confirm that the specified robot number is the same as the value set in [MAINTENANCE]-[MAINTENANCE DATA]-[STATION NO.] of robot S.G. data.
Click [OK] button to show the error dialog described below.

(2) Command error received
Or else if response of command error is received, the following message is shown.

Possible reason and action of this error is show below.
(a) The controller does not support to upload or download this data type.
Some old type or version of the robot controller does not support to upload or download servo parameter or expanded parameter. In this case, you have to save data only by the memory card. HR Editor can read from or write to saved data in the memory card.
(b) Setting of controller type may be wrong.
In case that you have selected HNC-5XX as the controller type but actual type is HNC-1XX,2XX,3XX,544 without robot number, Uploading or downloading will fail as command error.
(c) Setting of controller type is HNC-1XX,2XX,3XX,544 with robot number, but actually the controller does not support the robot number.
The setting of robot controller type is right but using the robot number. Select “Without robot number” and retry.
Whether these message have been shown or not, if the communication error is detected when uploading, the communication error dialog box is shown.

In case of [Retry] clicked, the HRCS command by which the error has occurred is sent once more. In case of [Abort] clicked, uploading is stopped. And in case of [Ignore] clicked, the error occurred command is passed and uploading is continued. [Communication Data] clicked, you can see sending and receiving data when the error has occurred.

Position Address Out of Range

When position data uploaded, if the current execution address exceeds the range of position addresses defined in the controller, the following message will be shown. But in case of HNC-1XX,2XX,3XX,544 controller, the message “Possibility that some positions are not initialized.” will be shown. See next “Uploading Position Data That Has Not Been Initialized” for this case.

Continue to click [OK] button. But in case that [Start Address] was out of range, position data was not uploaded at all. Set [Start Address] in the range and upload again.

Uploading Position Data That Has Not Been Initialized

Position data of the robot is ordinarily initialized at the release as follows.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis</td>
<td>0.0</td>
</tr>
<tr>
<td>M data</td>
<td>End Position (shown as “??” by T-PEN)</td>
</tr>
<tr>
<td>F data</td>
<td>99</td>
</tr>
<tr>
<td>S data</td>
<td>0</td>
</tr>
<tr>
<td>ARM</td>
<td>L</td>
</tr>
</tbody>
</table>

When there are positions that has not been initialized by some reason, the following message is shown at uploading position data.
[Yes] clicked, uploading is continued to skip the invalid data. [No] clicked, abort uploading. The file uploaded to select [Yes] can be edited by Position Editor.

In case of HNC-1XX, 2XX, 3XX, 544 controller, if the current execution address of position exceeds the range of position addresses defined in the controller, this message will be shown. You must select [No] usually and set the valid value to [Start Address] and [End Address] to upload again. If [Yes] selected, continue to upload neglecting invalid addresses.
4. Upload/Download Robot Data

4.4. Download from Computer to Robot

Downloading function will send the robot data to the robot.

Robot Conditions When Downloading

The following robot status is recommended for downloading robot data.

- Without moving (Key-In mode the best)

Some type of robots cannot be downloaded when an error occurs such as emergency stop, servo error or overrun.

Setting of Downloading

1. Select [Download] radio button in [Process Type].

After download selected, [Controller type at uploading] will be disabled because HR Editor recognizes the controller type information saved in the downloading file.

If you have selected HNC-1XX,2XX,3XX,544 type in [Controller type at uploading], you cannot select “Configuration” or “Expanded parameter” as the data type.

In this case, you have to do one of the following operations if you want to download “Configuration” or “Expanded parameter”.

(1) Terminate Robot Data Communication window and select HNC-5XX type in [Project settings]-[COM Format]-[Robot Controller Type] of HR Editor Main Menu.

(2) Select “Upload” in [Process Type] and then select “HNC-5XX” in [Controller type at uploading]. And select “Download” again in [Process Type].

2. Select [Data Type] to download.

If you download position data, click [Position Data] check box and input the downloaded data file name to [Position Data File Name] text box. Also you can select the file by the file selection dialog box to click [Browse...] button.

And specify the range of position address. Default of the range is 0000 to 0999 for HNC-1XX,2XX,3XX,544 and 0000 to 3999 for other types. You can enter the start address to [Start Address] text box or the end address to [End Address] text box to change the range. Also you can change the range to move sliders. To click [<] or [>] button clicked, you can select the address with every 1000 points automatically.

To select [Tool]-[Read Position Address Range] menu, you can read the range of position addresses defined in the robot controller, and you can set the value of [Start Address] and [End Address] automatically.
If you download other data, click the check box of other data and input the downloaded data file name to [Data File Name] text box. Also you can select the file by the file selection dialog box to click [Browse...] button. In case of servo parameter, when you have selected HNC-1XX,2XX,3XX,544, you must specify the file with the extension “.mem”. When HNC-5XX selected, specify the file with extension “.svo”.

If you have already specified the file name to the other text box, the suggested file name with the modified suffix is automatically shown in the text box of the selected data. You can select more than two data types at once. In this case, the robot data will be downloaded in the following order: position data -> S.G. data -> S.P. data -> configuration -> servo parameter -> expanded parameter.

The execution between “Configuration” and other data must be exclusive each other. If you select “Configuration”, you cannot select other data type. If you select the data type except “Configuration”, you cannot select “Configuration”.

For Expanded Parameter, you can download parts of data in the file.

You may enter the data numbers that you want to download to [Data Range]. The format to enter is shown below.

The data number is the number which is displayed as “Expansion 9999” when you edit Expanded Parameter file.

- Separate the data numbers by a comma.
- In case of serial numbers, bind the first number and the end number by a hyphen. If you omit the end number, it means that you specify the maximum data number for the end number.
- There can be a space character in front of and behind a comma or a hyphen.

In case of the following conditions, the format error will be shown when you click [OK] button.

- You have entered an another character besides a comma, space, hyphen or numerical character.
- You have entered only a comma, space or hyphen.
- You have entered a minus number.
- When a hyphen used, the first number is more than the end number.

If you have not entered any character to [Data Range], all data in the file will be downloaded. It is noted that the error message will be shown if you have entered only space characters.
3. Click [OK] after setting 1. - 2. And the confirming dialog box is shown. Check the contents of the message. You can see the hidden message to scroll.

Click [OK] button to start downloading robot data and click [Cancel] to cancel downloading.
If you want to change the communication conditions such as robot number, click [Set Conditions]. See “Change Connection Conditions” about the settings.
After [OK] button clicked, various checking will be executed as shown below.

Checking Controller Type in Data File

If you specify more than two data types, it is checked whether controller types registered in the files have consistency or not. If the following conditions are not satisfied, the message is shown as follows.

1. All types are HNC-1XX,2XX,3XX,544
2. All types are HNC-5XX with URL
3. All types are HNC-5XX standard or HNC-5XX for semiconductor

Click [Yes] button to continue downloading. Click [No] button to abort downloading.
Specify the files in accordance with the conditions mentioned above.
Checking Robot Mode (Important!)

Before downloading, the current robot mode is checked. Downloading of bad data during the robot running may cause the robot an incorrect motion. If the current robot mode is “AUTO” or “ONLINE”, the following message is shown.

You must usually select [Abort] button to stop downloading. For a safety, you must stop the robot and download data at “KEY-IN” mode.

After downloading, check the motion of the robot using “CHECK” mode for example.

Checking Robot Configuration Mode

In case of HNC-5XX robot, there is a restriction of downloading data types whether the connected robot is currently under configuration mode or not.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Configuration Mode</th>
<th>Not Configuration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position data</td>
<td>Cannot be downloaded</td>
<td>Can be downloaded</td>
</tr>
<tr>
<td>S.G./S.P. data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo parameter</td>
<td>Can be downloaded</td>
<td>Cannot be downloaded</td>
</tr>
<tr>
<td>Expanded parameter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before the execution of downloading, HR Editor checks the current configuration mode of the robot and if the specified data cannot be downloaded, the following message will be shown.

Click [OK] button to abort the execution of downloading.
And then in main window, selected check boxes that cannot be downloaded will be off automatically.
Checking Robot Version

When downloading configuration, servo parameter or expanded parameter, HR Editor checks the ROM version of the connected HNC-5XX robot before the execution of downloading. These data types are available only to a specific version or later.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>HNC-5XX ROM Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>5.02.007V or later</td>
</tr>
<tr>
<td>Servo parameter</td>
<td>5.02.007 or later</td>
</tr>
<tr>
<td>Expanded parameter</td>
<td>6.02.008T or later</td>
</tr>
</tbody>
</table>

If the detected ROM version is older than one described in this table, the following message will be shown.

Click [Yes] to start downloading.
Click [No] to exit downloading.

Mention Especially for Downloading Configuration

Before downloading configuration, if the ROM version of the connected HNC-5XX robot is older than 6.03.000, the following message will be shown.

Click [Yes] button to start the execution of downloading. Click [No] button to exit downloading.
If the version is older than 6.03.000, the following operation is necessary only one time. Without this operation, the robot will respond the error “Communication command error” for downloading configuration.
1. Transfer the robot to configuration mode.
4. Upload/Download Robot Data

(2) Press [SHIFT] key then [FUNC]+[CAN] key to show the menu.
(3) Select [2.MANUAL SETTING].
(4) Select [1.MOTOR/DRIVER].
(5) You must register the current data of the all (No.01-No.16) motors to press [END] key and then [ENTER] key. You can change the motor number to use [INC] key or [SHIFT]-[INC] key.

Confirming to Download Configuration

When downloading configuration, if the some checking procedures are detected as good, the following message will be shown to confirm downloading.

Click [OK] button to start downloading.
Click [Cancel] button to exit downloading.

Execute Downloading

After you click [OK] button in the confirming window and then the some checking procedures are detected as good, downloading starts and the progress window is shown.

When downloading position data, you can check the downloading process by the progress bar and the current downloading address of position.
When downloading S.G. data or S.P. data, you can check the downloading process by the text box in which uploading data is shown.

![S.G. data download](image)

When downloading configuration, servo parameter or expanded parameter, you can check the downloading process by the progress bar and the text box in which downloading data is shown.

![Configuration download](image)

Completion of Downloading

After downloading is completed, all messages of each data will become “Data downloading completed.”. Then the [Stop] button will change to [Retry] button and [Abort] button will be enabled.

Stopping to Download

Click [Stop] button to stop downloading. Click [Retry] to restart downloading or click [Abort] to go back the main uploading/downloading window.

Note) [Stop] button or [Retry] button is toggled. When downloading, the button is available as [Stop] and when stooped, it is available as [Retry].

Downloading Error

(1) No response from the robot controller
(2) Command error received

Refer to “Upload from Robot to Computer” about this error.

Whether these message have been shown or not, if the communication error is detected when uploading, the communication error dialog box is shown.

![Communication Error](image)

In case of [Retry] clicked, the HRCS command by which the error has occurred is sent once
more.
In case of [Abort] clicked, downloading is stopped.
And in case of [Ignore] clicked, the error occurred command is passed and downloading is continued.
[Communication Data] clicked, sending and receiving data when the error has occurred is shown.

Position Address Out of Range

When position data downloaded, if the current execution address exceeds the range of position addresses defined in the controller, the following message will be shown.

![Robot data download](image)

Address 1000
Address range error is received from robot. It will be neglected to download the rest of addresses. Downloading until now has been executed normally.

[OK]

Continue to click [OK] button.
But, in case that [Start Address] was out of range, position data was not downloaded at all.
Set [Start Address] in the range and download again.

When communicated with HNC-1XX,2XX,3XX,544 controller, the error “Communication format error” occurs in this case showing the error dialog. You must [Abort] and set the valid value with the range to [Start Address] and [End Address] and download again.

“Out of Area Limit” Error When Downloading Position Data

When downloading position data, the robot controller responds “Out of area limit” error in the following cases.

- Downloading the data that has the value out of the range specified [UPPER] and [LOWER] in the S.G. data group of [LIMIT]-[AREA LIMIT] currently set to the robot controller.
- Downloading the zero data of axes toward the robot controller that cannot move to the zero position such as AR series in the type of the horizontal articulated (SCARA) robot.

In these case, the following message is shown when downloading.

![Robot Data Communication](image)

Warning! Possibility that some positions are out of area limit. Do you want to download only valid positions? Click [Yes] to continue and click [No] to abort.

[Yes] clicked, downloading is continued without registration of the error position to the robot and the error message will be never displayed after this operation. [No] clicked, abort downloading.
4.5. Upload/Download History

After uploading or downloading, a history file is created at the following folder.
- Windows95,98 ¥Windows¥Temp¥HrUpDownHistory
- WindowsNT ¥Temp¥HrUpDownHistory

A history file is a text file with the extension “.log” and with the file name that includes created date and time.

You can open a history file by text editor such as “Note Pad” or documentation application such as “Word”.

You can display logging data registered in the history file to select [Tool]-[Upload/Download History] menu in the main window.

In the list-view at the upper part of window, the list of history files is shown in order of created date and time.

Click the file name to show the detailed logging data in the lower part of window.

If an error occurred during uploading or downloading, error information was logged to the history file. When an error occurs, the message whether you want to display histories or not is shown at the termination of uploading or downloading.

Remove History

After selecting a history file, click [Remove] button. Then the confirmation dialog is shown, if [Yes] selected, remove the selected history file.

Using [Shift] key or [Ctrl] key, you can select more than two history files.

If [Remove All] button clicked, you can remove all history files after the confirmation dialog is shown.

You may remove history files by Windows application such as “Explorer”.

Change View

Select an option button in “View” to filter history files by operated type.
4. Upload/Download Robot Data

Search Text

You can search a text written in history files. Enter a text to find and then click [Next] button to start searching from the current cursor position. If the text cannot be found in the current history file, it is searched in all history files. When the text is found, the history file that includes the searching text is selected automatically and the color of the found text is reversed.

Refresh the View

Click [Refresh] button to refresh the view of window.

Logging All Transmission

After you have checked to ON at “Logging All Transmission”, all transmission data between PC and the robot controller during uploading/downloading will be logged to the history file. Checking status of “Logging All Transmission” is not saved after the termination of HR Editor. When HR Editor starts next, checking status of “Logging All Transmission” becomes always OFF.

Notice the following matter when logging all transmission data:
- It takes time a little longer for uploading or downloading.
- Increment of the history file volume causes to consume the hard disk more faster.

Free Space of Hard Disk

Total file size of all history files is displayed at upper part of the window. With attention to the free space of hard disk of your PC, if the available space becomes little, remove the history.

When “Upload/Download History” window opened, if total size of all history files exceeds one megabytes, the following warning is shown.
4. Upload/Download Robot Data

4.6. Waiting for COM Released When Via STC

In the case that you have selected [Via STC] in the settings of the connection type and you have checked [Communicating without stopping jobs] box to ON in [STC COM Settings], when the communication started, it is checked that the HARL-III program uses the specified STC COM currently.
If the HARL-III program does not use the STC COM, STC is transferred to Through Mode and then uploading or downloading starts.
If the HARL-III program uses the STC COM now, the following message is shown.

![Wait for STC COM Released](image)

Click [Abort] to stop uploading or downloading. And then execute [Retry].
After waiting the time specified by [STC COM released timer] in [STC COM Setting], if the COM has not been released by the HARL-III program, the following message is shown.

![HRUpDown](image)

Click [OK] button and execute [Retry]. Or increase the value of the time set by [STC COM released timer] in [STC COM Setting] and then execute uploading or downloading.
4.7. Change Communication Conditions

When uploading or downloading robot data, the settings of communication in the parameter file 'harl.dat' that contains the data set by Main Menu are used ordinarily. But you can change the settings temporarily by the setting dialog box. Operate as follows to open the setting dialog box.

- Click [Change Settings] button in the confirming window before uploading or downloading starts.
- Click [Settings] button in the main window.

Connection Type

You can select [Robot Directly] or [Via STC] for [Connection Type]. When [Robot Directly] selected, you can set only [Robot Number]. When [Via STC] selected, you can set only [STC COM Number] and [STC COMn Settings] button.

Robot Number

In case of [Robot Directly], enter robot number to the combo box. You can select the robot number in the list that shows the numbers used recently. If you do not use the robot number, enter null string or click [Without robot no.] check box.

STC COM Number

In case of [Via STC], select [STC COM No.] that communicates with a robot. Click [STC COMn Settings] to change the settings for the specified STC COM.

Termination of Setting

After [OK] button clicked, the specified settings is used for uploading/downloading. Click [Cancel] to cancel the specified settings.

Note) The specified settings are changed temporarily but the parameter file 'harl.dat' is never changed.
STC COM Settings

After [STC COMn Settings] button in the setting dialog box is clicked, the following dialog box is shown. You can change the settings of STC COM used by the communication via STC.

![STC COM Settings Dialog]

See “[Set-up]-[Project Settings]-[STC COM port]” about the details of the settings.

4.8. Reading Robot Version

Click [Read Robot Version] button in the main window to read the ROM version of the connected robot and the following message will be shown.

![Read Robot Version Message]

[Read Robot Version] button is disabled when you select HNC-1XX,2XX,3XX,544 type controller. Selecting HNC-5XX type, if you read the version from HNC-1XX,2XX,3XX,544 actually, “Communication command error” will occur.

4.9. Exit Uploading/Downloading

Click [Exit] button in the main window of uploading/downloading to exit.
4.10. Error Messages of Uploading/Downloading

Data Input Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/S.G./S.P. data file name is Null.</td>
<td>File name or path of data is not entered. Enter file name or path.</td>
</tr>
<tr>
<td>Start/End address out of range.</td>
<td>Position address is out of range. Enter the value of address from 0000 to 7999.</td>
</tr>
<tr>
<td>Start address is bigger than end address.</td>
<td>Start address of position is bigger than end address. Enter the start address less than the end address.</td>
</tr>
<tr>
<td>Robot number out of range.</td>
<td>Robot number is out of range. Enter the value of robot number from 0 to 999.</td>
</tr>
</tbody>
</table>

File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/S.G./S.P. data file exists. [File Name]</td>
<td>The file specified for uploading already exists. If you want to overwrite the file, click [OK]. If you do not overwrite, click [Cancel] and enter the another file name.</td>
</tr>
<tr>
<td>Do you want to overwrite?</td>
<td>The file specified for downloading is not found. Enter the existing file name.</td>
</tr>
<tr>
<td>Position/S.G./S.P. data file not found. [File Name]</td>
<td>The file cannot be opened. Check the attribution of the file in the property. When the other process has already opened the file, terminate the process.</td>
</tr>
<tr>
<td>Cannot open file. [File Name]</td>
<td>First line in the Position/S.G./S.P data file is invalid controller type.</td>
</tr>
</tbody>
</table>

Uploading Error Message

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot save file. [File Name]</td>
<td>The file cannot be saved. It may be caused by disk space exhausted. Delete useless files or change the save drive and retry uploading.</td>
</tr>
<tr>
<td>Warning! Possibility that some positions are not initialized. Do you want to upload only valid positions?</td>
<td>See described section.</td>
</tr>
<tr>
<td>Data cannot be uploaded when the robot is in configuration mode.</td>
<td>See described section.</td>
</tr>
<tr>
<td>For this robot version, uploading XXXX is not available.</td>
<td>See described section.</td>
</tr>
</tbody>
</table>
4. Upload/Download Robot Data

Extension of servo parameter file must be [.mem] for HNC-1XX,HNC-2XX,HNC-3XX,HNC-544(4 Axes) type. See described section.

Extension of servo parameter file must be [.svo] for HNC-5XX(6 Axes) type. See described section.

Address range error is received from robot. It will be neglected to upload the rest of addresses. Uploaded data until now will be saved normally. See described section.

Downloading Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad range of Expanded Parameter.</td>
<td>The format specified as the data range for downloading Expanded Parameter is wrong. Enter the data numbers by correct format.</td>
</tr>
<tr>
<td>Position data of start address not found.</td>
<td>When downloading position data, the data of the specified start address cannot be found in the position data file. Enter the correct start address that exists in the file.</td>
</tr>
<tr>
<td>Position data not found. Address mnnn~NNNN position data downloaded.</td>
<td>For example, though the specified range of position data is 0100 to 0200 for downloading, address 0000 to 0150 data has been found in the file. In this case, this message is shown and downloading 0100 to 0150 data is completed successfully.</td>
</tr>
<tr>
<td>Warning! Possibility that some positions are out of area limit. Do you want to download only valid positions?</td>
<td>See described section.</td>
</tr>
</tbody>
</table>
| ARM value set in the file is not supported for the downloading by RS232C communication with HNC-1XX,2XX,3XX,544. | • HNC-SR364+AR-K440
• HNC-YS364+AR-K440
Using this type, you have downloaded position data file read from the memory card. But this file includes some special data that cannot be supported for data communication. It is only supported by the memory card interface. |

Data cannot be downloaded when the robot is in configuration mode. See described section.

For this robot version, See described section.
downloading XXXX is not available.

For this robot version, you must operate the robot as follows before downloading configuration. This operation needs not twice but only one time.

Current robot mode is AUTO or ONLINE. In this mode, downloading of data may cause the robot an incorrect motion. For a safety, you must stop the robot and download data at KEY-IN mode. You can continue downloading to click [Continue] button, but do not select it under normal conditions.

There are different controller types in the specified files.

Address range error is received from robot. It will be neglected to download the rest of addresses.

Downloading until now has been executed normally.

Common Error Messages for Downloading/Uploading

Error Message
STC has been already through mode by the other COM that is not connected with your computer. Do you want to release through mode ?

Explanation and Action
You have selected the PC OM port that cannot be detected by Windows system. Confirm the running PC COM port and then select it by [Set-up]-[Project Settings]-[RS232C Port] in

It may be that Windows cannot detect this COM port. Confirm the running COM ports to show [Ports(COM/LTP)] in
4. Upload/Download Robot Data

[Start]-[Settings]-
[Control Panel]-
[System]-[Device Manager] in Windows system.

PC COM number is illegal. System selects PC COM1.

Receiving time out detected. If the cable, connection and the RS232C settings are all OK, there is a possibility that the robot number set in HR Editor is not the same as the value set in the robot. Confirm the value of [MAINTENANCE]-[MAINTENANCE DATA]-[STATION NO] in S.G. by using the teach pendant and let the value of HR Editor be the same as the value of the robot.

Command error (61h) has been received from the controller. The possible reasons are shown below. You must select [Abort] in the robot error dialog that will be shown next.

There is a possibility that “Harl.dat” file is destroyed. Terminate HR Editor and then remove “Harl.dat” file located in the installed folder. Then restart HR Editor.

See described section.
5. Edit Position Data

5.1. Introduction to Position Editor

You can use Position Editor to show and edit the position data uploaded from a robot. You can create a new position data file by Position Editor. If the computer has the PC card slot, you can read position data saved in the memory card or write position data to the memory card.

Position Editor starts by following operation.
(1) Select [Position Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[Position] in Main Menu of HR Editor.
(3) Click button in Main Menu of HR Editor.

Function Structure of Position Editor

Table of Data Type

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Access Type</th>
<th>HNC-1XX, 2XX, 3XX, 544</th>
<th>HNC-5XX</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>Position Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>Position Editor</td>
</tr>
</tbody>
</table>

OK: Robot holds this data and HR Editor can access it.
5.2. Start Editing of Position Data

You can start Position Editor by one of the following operations.

1. Select [File]-[Position] in Main Menu of HR Editor. Then you must select to open a new file or an existing file. In case of opening an existing file, specify the file to open.
2. Select [Position Editor] of [HR-Editor x.x] group in the start menu of Windows.
3. Select a position data file by Windows Explore and double-click it.

Note) After installing of HR Editor, first starting of Position Editor must be selected by Main Menu of HR Editor.

If Position Editor is started without selection of an existing file, a new editing window opens for the specified controller type defined in parameter file ‘harl.dat’. (See “Parameter File ‘harl.dat’”.)

About creating a new file for the other controller type, see “Create New Position Data File”. When starting, a child window of Position Editor is maximized.
5.3. View of Position Editor

You can open more than two windows to edit position data in the main window. And you can arrange editing windows or icons by the [Window] menu. The sheet of position data is shown in the editing window. The contents of the sheet have variation according to the controller type as follows.

HNC-1XX,2XX,3XX,544 (max. 4 axes)

Rows: You can edit the 1000 points for which the address is assigned from 0000 to 0999.
Columns:

<table>
<thead>
<tr>
<th>Title of Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Address number</td>
</tr>
<tr>
<td>X[mm]</td>
<td>Position of X axis</td>
</tr>
<tr>
<td>Y[mm]</td>
<td>Position of Y axis</td>
</tr>
<tr>
<td>Z[mm]</td>
<td>Position of Z axis</td>
</tr>
<tr>
<td>W[mm]</td>
<td>Position of W axis</td>
</tr>
<tr>
<td>ARM</td>
<td>Pose of robot arm</td>
</tr>
<tr>
<td>LOCAL</td>
<td>Type of coordinates</td>
</tr>
<tr>
<td>M</td>
<td>M data</td>
</tr>
<tr>
<td>F</td>
<td>F code</td>
</tr>
<tr>
<td>S</td>
<td>S code</td>
</tr>
<tr>
<td>Comment</td>
<td>Any string</td>
</tr>
</tbody>
</table>

HNC-5XX (max. 6 axes): Standard or for Semiconductor

Rows: You can edit the 4000 points for which the address is assigned from 0000 to 3999.
Columns:

<table>
<thead>
<tr>
<th>Title of Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Address number</td>
</tr>
<tr>
<td>X[mm]</td>
<td>Position of X axis</td>
</tr>
<tr>
<td>Y[mm]</td>
<td>Position of Y axis</td>
</tr>
<tr>
<td>Z[mm]</td>
<td>Position of Z axis</td>
</tr>
<tr>
<td>W[mm]</td>
<td>Position of W axis</td>
</tr>
<tr>
<td>R[mm]</td>
<td>Position of R axis</td>
</tr>
<tr>
<td>C[mm]</td>
<td>Position of C axis</td>
</tr>
<tr>
<td>ARM</td>
<td>Pose of robot arm</td>
</tr>
<tr>
<td>LOCAL</td>
<td>Type of coordinates</td>
</tr>
<tr>
<td>M</td>
<td>M data</td>
</tr>
<tr>
<td>F</td>
<td>F code</td>
</tr>
<tr>
<td>S</td>
<td>S code</td>
</tr>
<tr>
<td>Comment</td>
<td>Any string</td>
</tr>
</tbody>
</table>
HNC-5XX with URL (max. 6 axes)

Rows: You can edit the 4000 points for which the address is assigned from 0000 to 3999.
Columns:

<table>
<thead>
<tr>
<th>Title of Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Address number</td>
</tr>
<tr>
<td>X[mm]</td>
<td>Position of X axis</td>
</tr>
<tr>
<td>Y[mm]</td>
<td>Position of Y axis</td>
</tr>
<tr>
<td>Z[mm]</td>
<td>Position of Z axis</td>
</tr>
<tr>
<td>H[deg]</td>
<td>Position of H axis</td>
</tr>
<tr>
<td>T[deg]</td>
<td>Position of T axis</td>
</tr>
<tr>
<td>S[deg]</td>
<td>Position of S axis</td>
</tr>
<tr>
<td>μ</td>
<td>μ data</td>
</tr>
<tr>
<td>ARM</td>
<td>Pose of robot arm</td>
</tr>
<tr>
<td>ROUND</td>
<td>Round flag</td>
</tr>
<tr>
<td>SIGN</td>
<td>Sign flag</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Enable flag</td>
</tr>
<tr>
<td>LOCAL</td>
<td>Type of coordinates</td>
</tr>
<tr>
<td>M</td>
<td>M data</td>
</tr>
<tr>
<td>F</td>
<td>F code</td>
</tr>
<tr>
<td>S</td>
<td>S code</td>
</tr>
<tr>
<td>Comment</td>
<td>Any string</td>
</tr>
</tbody>
</table>

Status Bar in The Editing Window

The following information is shown in the status bar (the bar at the lowest area of the window) in the editing window for each position file.

- Controller type
- Stroke type
- Position address of the active cell
- Column name of the active cell
5.4. Stroke Type Setting

You can set the default stroke type applied to editing to select [Tool]-[Option]-[Stroke Setting] in the menu.

Note: See “Operating Environment” about stroke types.

The stroke type selected here will be used as the default value of the stroke checking dialog opened when the following operation is executed.

2. Open position file.
3. Open position file saved in memory card.

To select [Without stroke checking dialog when file opened] check-box to ON, the stroke checking dialog will not be shown when (1)-(3) is operated and the stroke type selected here will be applied to editing.

If you set the wrong stroke type that differs from the type of actual data, there will be the following result.

1. After creating new position file.
 You cannot enter the axis value out of the stroke limit.
 If there is a value out of the stroke limit in the opened file, it is able to read but you cannot edit this value.
 And you cannot enter the new axis value out of the limit of the stroke.
3. After opening position file saved in memory card.
 HNC-1XX, 2XX, 3XX, 544 (4 axes) If there is a value out of the stroke limit in the opened file, it is able to read but you cannot edit this value.
 And you cannot enter the new axis value out of the limit of the stroke.
 HNC-5XX (6 axes) The decimal point is shifted. The displayed value of an axis is x10, x100, x1000 or 1/10, 1/100, 1/1000 from the actual data.
 And you cannot enter the new axis value out of the limit of the stroke.
5.5. Create New Position Data File

Click [File]-[New HNC-xxx] according to the controller type to create a new position file. Then an editing window for the new position data is opened in the main window. Also you can open the new editing window to click the button such as in the tool bar.

Stroke Checking Dialog

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the following stroke checking dialog is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.

Select the stroke type for the file to create.

To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.

If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.
5.6. Open Position Data File

1. Click [File]-[Open] to show the file selection dialog box.
2. Select the file in the list view to open and click [Open] button. Then the editing window for the specified file is opened.

Also you can open the editing window for the existing file to click button in the tool bar.

The list of recent opened files is shown at the lower area of [File] menu. Click the file name of this list to open the file.

Stroke Checking Dialog

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the following stroke checking dialog is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.

Select the stroke type for the file to open.

To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.

If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.
5. Edit Position Data

5.7. Open Position Data File Saved in Memory Card

1. Insert the memory card to a memory card slot of the computer. In case of “New hardware detection” from Windows, install the memory card driver by the operation described at “Install Memory Card Driver”.

2. Select [File]-[Memory Card]-[Open] in the menu to show the file selection dialog for the memory card. Select the file to open in the list and click [Open] button. There is the case that the following message is shown just after you have inserted the memory card to the card slot.

In this case, click [OK] button and then click [Cancel] button in the file selection dialog. Wait for few seconds and select [File]-[Memory Card]-[Open] in the menu again.

In case that this message is shown several times and you cannot access the memory card, confirm the hardware name of the memory card. If the hardware name is correct, terminate HR Editor and other application program and then reboot the computer to let the memory card in the card slot. If the hardware name is wrong, change memory card driver of Windows. (See “Install Memory Card Driver”.)

If you select the file except position data, the error message is shown and the file cannot be opened.

3. After showing the robot type dialog, HR Editor reads the specified file to show the editing window.

Memory Card Removal

You can remove the memory card from the computer unless HR Editor is currently accessing the memory card.

The access to memory card means that

- the file selection dialog for the memory card is shown.
- HR Editor reads or writes the memory card file.

Concerning safety, it is recommended that you remove the memory card after HR Editor is terminated.

Note) After operating as follows, a Windows fatal exception error occurs on some type computer. In this case, you have to reset the computer. And you must not operate as follows, but you can remove the memory card directly. Although [Unexpected PC Card Removal] message is shown, there is no problem for the memory card unless HR Editor is currently accessing the memory card.

(1) Click the card icon in the task tray of Windows.

(2) After [Stop HNC SRAM Memory Card] menu is shown, click to select it.
(3) After [You may safely remove this device.] message is shown, click [OK] button.
(4) Remove the memory card from the card slot.
5. Edit Position Data

Robot Type Dialog

After selecting the file saved in the memory card, the following robot type dialog is shown.

The information of the specified file is shown in [File Information]. And the robot controller type decided by this information is shown. You need not change the displayed controller type ordinarily.

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the stroke type checking message is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.

Select the stroke type for the file to open.
To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.
If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.
5.8. Input Position Data

To change the data of the sheet, click the cell and enter the value to the cell.
Key functions are as follows.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor Up</td>
<td>Activate a upper cell.</td>
</tr>
<tr>
<td>Cursor Down</td>
<td>Activate a lower cell.</td>
</tr>
<tr>
<td>Cursor Right</td>
<td>Activate a right cell.</td>
</tr>
<tr>
<td>Cursor Left</td>
<td>Activate a left cell.</td>
</tr>
<tr>
<td>TAB or RETURN</td>
<td>Activate a forward cell. (Forward direction is left to right and upper to lower)</td>
</tr>
<tr>
<td>SHIFT+TAB</td>
<td>Activate a backward cell. (Backward direction is lower to upper and right to left)</td>
</tr>
<tr>
<td>PageUp</td>
<td>Activate a cell at one page upper.</td>
</tr>
<tr>
<td>PageDown</td>
<td>Activate a cell at one page lower.</td>
</tr>
<tr>
<td>CTRL+PageUp</td>
<td>Activate a cell at one page left.</td>
</tr>
<tr>
<td>CTRL+PageDown</td>
<td>Activate a cell at one page right.</td>
</tr>
<tr>
<td>HOME</td>
<td>Activate a cell at the first column in the current row.</td>
</tr>
<tr>
<td>END</td>
<td>Activate a cell at the last column in the current row.</td>
</tr>
<tr>
<td>CTRL+HOME</td>
<td>Activate a cell at the top of the sheet.</td>
</tr>
<tr>
<td>CTRL+END</td>
<td>Activate a cell at the end of the sheet.</td>
</tr>
<tr>
<td>ESC</td>
<td>Undo the value of an active cell.</td>
</tr>
<tr>
<td>BS</td>
<td>Delete a character before cursor.</td>
</tr>
<tr>
<td>DEL</td>
<td>Delete a character after cursor.</td>
</tr>
</tbody>
</table>

Available ranges of input value are as follows.

Controller type: HNC-1XX,2XX,3XX,544 (max. 4 axes)

<table>
<thead>
<tr>
<th>Kind of Data</th>
<th>Changeable</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of X axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of Y axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of Z axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of W axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Pose of robot arm</td>
<td>Changeable</td>
<td>"R" or "L"</td>
<td>"R"</td>
</tr>
<tr>
<td>Type of coordinates</td>
<td>Changeable</td>
<td>0~3</td>
<td>0</td>
</tr>
<tr>
<td>M data</td>
<td>Changeable</td>
<td>0~99 (end point: "??")</td>
<td>"??"</td>
</tr>
<tr>
<td>F code</td>
<td>Changeable</td>
<td>0~99</td>
<td>99</td>
</tr>
<tr>
<td>S code</td>
<td>Changeable</td>
<td>0~99</td>
<td>0</td>
</tr>
</tbody>
</table>

Note) Some robot such as AR-K400 types can use "r" or "l" for the pose of robot arm. These poses are the special value set when robot teaching. But these poses are only available in the memory card file. The file that includes "r" or "l" cannot be downloaded by the RS232C communication.
Controller type: HNC-5XX (max. 6 axes), Standard or for Semiconductor

<table>
<thead>
<tr>
<th>Kind of Data</th>
<th>Changeable</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of X axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of Y axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of Z axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of W axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of R axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Position of C axis</td>
<td>Changeable</td>
<td>Depends on stroke type</td>
<td>0.000</td>
</tr>
<tr>
<td>Pose of robot arm</td>
<td>Changeable</td>
<td>"R" or "L"</td>
<td>"R"</td>
</tr>
<tr>
<td>Type of coordinates</td>
<td>Changeable</td>
<td>0~3</td>
<td>0</td>
</tr>
</tbody>
</table>
| M data | Changeable | 0~99(end point:"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
5.9. Select Cells

There are the following types to select cells.

(1) Selection of only one cell
(2) Selection of serial cells named as “cell block”
(3) Selection of discrete cells
(4) Selection by searching

Selection of Only One Cell

Click a cell to select and it is activated.

Selection of Serial Cells Named as “Cell Block”

You can select the cell block as follows.

Select a cell in the upper left corner of the cell block and drag the mouse to the lower right corner of the cell block.

You can select all cells of a row (a row block) to click the title of a row. Also you can select a row block to press SHIFT + SPACE key.

You can select all cells of a column (a column block) to click the title of a column. Also you can select a column block to press CTRL + SPACE key.

To press SHIFT + cursor key or to press SHIFT + clicking mouse, you can change the selection area of the cells.
5. Edit Position Data

Selection of Discrete Cells

Click a cell pressing CTRL key to select discrete cells.
You can select more than two cell blocks discretely to select a cell block pressing CTRL key.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>435.400</td>
<td>181.660</td>
<td>3.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>435.200</td>
<td>181.710</td>
<td>33.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>435.400</td>
<td>181.660</td>
<td>3.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>??</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>??</td>
</tr>
<tr>
<td>5</td>
<td>450.150</td>
<td>260.040</td>
<td>3.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>450.150</td>
<td>260.040</td>
<td>13.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>450.150</td>
<td>260.040</td>
<td>3.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>??</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>??</td>
</tr>
<tr>
<td>10</td>
<td>311.500</td>
<td>533.230</td>
<td>45.380</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>41.350</td>
<td>527.760</td>
<td>45.980</td>
<td>0.000</td>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

After selecting discrete cells or cell blocks, if you click any cell without pressing CTRL key, the discrete selections are canceled.

Selection by Searching

Click [Edit]-[Select Cells] in the menu to select cells by searching.
You can execute the following selections.

- To select one row by specifying a position address
- To select cells by specifying logical conditions of searching

See “Search Data” about how to use the searching dialog.

Operation after Selecting Cells

After selecting cells by the above-mentioned operation, you can apply the following operation to the selected cells.

- Cut, Copy, Paste and Delete
 Note) In case that you have selected the discrete cells, these operation are not available showing the message as “Cannot operate for multiple selected blocks”.

- Calculation
- Print
5.10. Search Data

You can search data by the following types

- Searching by position address
- Searching by logical conditions

Click [Edit]-[Find] in the menu or button in the tool bar to show the searching dialog. Also, Click [Edit]-[Select Cells] to show the searching dialog.

[Address] is automatically selected for the searching type.

Searching by Position Address

Enter the address number and click [OK] button. The row of the specified address is activated.

Searching by Logical Conditions

You can search the value of cell data to specify the searching logical conditions. A searching condition consists of “Item”, “Operator” and “Value”. “Item” is the target data item to search. “Value” is the value to compare with the item by the operator. You can enter a decimal value.

You can select the following symbols for the operator of a condition.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>“Item” is equal to “Value”.</td>
</tr>
<tr>
<td>></td>
<td>“Item” is greater than “Value”.</td>
</tr>
<tr>
<td><</td>
<td>“Item” is less than “Value”.</td>
</tr>
<tr>
<td>>=</td>
<td>“Item” is greater than and equal to “Value”.</td>
</tr>
<tr>
<td><=</td>
<td>“Item” is less than and equal to “Value”.</td>
</tr>
<tr>
<td>Not=</td>
<td>“Item” is not equal to “Value”.</td>
</tr>
</tbody>
</table>
In case that there is only one condition, you can execute searching to click [OK] button after specifying “Item”, “Operator” and “Value”.

In case that there are more than two conditions, click [Add Condition] button after specifying “Item”, “Operator” and “Value”. After addition of the current condition to the list box [Registered Condition], you can set the new condition. The last settings of the condition are remained, so you may change only a setting that you want to enter for the new condition. The condition that is equal to one already registered is not added newly.

There is no limit of the number of the registered conditions.

You can delete a registered condition to click [Delete Condition] button after selecting the condition in the list box.

You can delete all registered conditions to click [Clear Conditions] button.

In case that there are more than two conditions, you must select [Combination Type of Conditions]. [AND] is selected automatically as default.

- **AND**
 All conditions are combined with each other by [AND] logic to judge for searching. So, data that fulfills all registered conditions will be searched.

- **OR**
 All conditions are combined with each other by [OR] logic to judge for searching. So, data that fulfills at least one of registered conditions will be searched.

The examples to search conditions are as follows.

(Example 1) Search X axis data that has the value from 100 to 105.

<table>
<thead>
<tr>
<th>Item Operator Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X [mm] >= 100</td>
</tr>
<tr>
<td>X [mm] <= 105</td>
</tr>
</tbody>
</table>

Select [AND] for the combination type of the conditions.

(Example 2) Search Y axis data that has the minus value or greater than 200.

<table>
<thead>
<tr>
<th>Item Operator Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y [mm] < 0</td>
</tr>
<tr>
<td>Y [mm] > 200</td>
</tr>
</tbody>
</table>

Select [OR] for the combination type of the conditions.

(Example 3) Search the row in that Y axis value is 10.25 and Z axis value is 23.4.

<table>
<thead>
<tr>
<th>Item Operator Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y [mm] = 10.25</td>
</tr>
<tr>
<td>Z [mm] = 23.4</td>
</tr>
</tbody>
</table>

Select [AND] for the combination type of the conditions.

(Example 4) Search the row in that Y axis value is 10.25 or Z axis value is 23.4.

<table>
<thead>
<tr>
<th>Item Operator Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y [mm] = 10.25</td>
</tr>
<tr>
<td>Z [mm] = 23.4</td>
</tr>
</tbody>
</table>

Select [OR] for the combination type of the conditions.

You can select the way that the specified conditions apply to data by [Searching Type].

- **Searching for a row under the conditions**
 A whole row that includes the cell under the specified conditions is searched.
 For example, (Example 3) searches for the position addresses in which X is 10.25 and Y is 23.4.
 (Example 4) searches for the position addresses in which X is 10.25 or Y is 23.4.
 In case of [Edit]-[Find] selected, the top cell (X axis cell) of the found row becomes activated.
 In case of [Edit]-[Select Cells] selected, the whole row becomes the selected mode.

- **Searching for a cell under the conditions**
 A single cell under the specified conditions is searched. When you have registered the conditions that consist of the different “Item” such as (Example 3) or (Example 4), this option cannot be selected.
 In case of [Edit]-[Find] selected, the found cell becomes activated.
In case of [Edit]-[Select Cells] selected, the found cell becomes the selected mode.

- Except end points (M=??)
 When this check-box is ON, the end points addresses (M=??) are neglected to search.

Note) The conditions such as the following example are invalid logically, but it is not checked for such conditions when you set.

(Example 5) Search the cell in that X axis value is 10 and X axis value is 20.

<table>
<thead>
<tr>
<th>Item</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X [mm]</td>
<td>=</td>
<td>10</td>
</tr>
<tr>
<td>X [mm]</td>
<td>=</td>
<td>20</td>
</tr>
</tbody>
</table>

Select [AND] for the combination type of the conditions.
After searching under these conditions, the message “Cannot find” will be shown.

You can set the address range for searching by [Address Range]. All addresses are automatically selected as default.

After settings of the conditions, the combination type, the searching type and the address range, click [OK] or [Find Next] button to start searching in the forward direction from the current activated cell closing the dialog. Click [Find Previous] button to start searching in the backward direction from the current activated cell.
During the execution to search, the message “Searching...” is shown.
You can stop searching to press ESC key.
In case that the row cannot be found, the message “Cannot find the row under specified conditions” will be shown.
In case that the cell cannot be found, the message “Cannot find the cell under specified conditions” will be shown.

After the dialog is closed, select [Edit]-[Find Next] in the menu or press F3 key to search by the current specified conditions in the forward direction from the current activated cell. Also, select [Edit]-[Find Previous] in the menu or press SHIFT+F3 key to search by the current specified conditions in the backward direction from the current activated cell. If the conditions are not registered, the message “Searching condition not defined” is shown and you cannot search.
5.11. Cut Data

You can cut data in the sheet. and the cells you have cut are filled with default data.

1. Select cells to cut. (See “Select Cells”.)

2. Click [Edit]-[Cut] or click button in the tool bar. Then the selected cells are cut and the default data is set to the cells. Also you can select [Cut] in the pop up menu by clicking the right button of the mouse.

Note) You cannot cut the data that has not been entered yet.

5.12. Copy Data

You can copy the selected cells in the sheet to the clipboard.

1. Select cells to copy. (See “Select Cells”.)

2. Click [Edit]-[Copy] or click button. Also you can select [Copy] in the pop up menu by clicking the right button of the mouse. Then the selected cells are copied to the clipboard.

Note) You cannot copy the data that has not been entered yet.
5.13. Paste Data

You can paste the clipboard data to the selected cells in the sheet. Pasting has two types as insert mode and overwrite mode according to INS key status. You can check INS key status in the status bar that shows “INS”.

Insert mode

Overwrite mode

Pasting on Insert Mode

If you paste data on insert mode, the pasted data is inserted to the specified address and the all data below the inserted address is shifted down. So, when the sheet is fully filled with the position data, the data at the end (address 7999) of the sheet is overflowed.

Example) Copy address 0000 - 0002 and paste to address 0500 on insert mode.

<table>
<thead>
<tr>
<th>Before Pasting</th>
<th>After Pasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add. 0000: Data 0000</td>
<td>Data 0000</td>
</tr>
<tr>
<td>Add. 0001: Data 0001</td>
<td>Data 0001</td>
</tr>
<tr>
<td>Add. 0002: Data 0002</td>
<td>Data 0002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 0500: Data 0500</td>
<td>Data 0000</td>
</tr>
<tr>
<td>Add. 0501: Data 0501</td>
<td>Data 0001</td>
</tr>
<tr>
<td>Add. 0502: Data 0502</td>
<td>Data 0002</td>
</tr>
<tr>
<td>Add. 0503: Data 0503</td>
<td>Data 0500</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 7997: Data 7997</td>
<td>Data 7994</td>
</tr>
<tr>
<td>Add. 7998: Data 7998</td>
<td>Data 7995</td>
</tr>
<tr>
<td>Add. 7999: Data 7999</td>
<td>Data 7996</td>
</tr>
</tbody>
</table>

When pasted on insert mode, the data in the columns except pasted column is set by default data.

1. Copy data for pasting. (See “Copy Data”.)
2. In case of overwrite mode, press INS key to transfer to insert mode.
3. Select destination cells to paste. (See “Select Cells”.)
4. Click [Edit]-[Paste] or click button. Also you can select [Paste] in the pop up menu by clicking the right button of the mouse.
Pasting on Overwrite Mode

If you paste data on overwrite mode, the pasted data is overwritten to the specified address. So the data is changed as much as pasted.

Example) Copy address 0000 - 0002 and paste to address 0500 on overwrite mode.

<table>
<thead>
<tr>
<th>Before Pasting</th>
<th>After Pasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add. 0000: Data 0000</td>
<td>Data 0000</td>
</tr>
<tr>
<td>Add. 0001: Data 0001</td>
<td>Data 0001</td>
</tr>
<tr>
<td>Add. 0002: Data 0002</td>
<td>Data 0002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 0500: Data 0500</td>
<td>Data 0000</td>
</tr>
<tr>
<td>Add. 0501: Data 0501</td>
<td>Data 0501</td>
</tr>
<tr>
<td>Add. 0502: Data 0502</td>
<td>Data 0002</td>
</tr>
<tr>
<td>Add. 0503: Data 0503</td>
<td>Data 0503</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 7997: Data 7997</td>
<td>Data 7997</td>
</tr>
<tr>
<td>Add. 7998: Data 7998</td>
<td>Data 7998</td>
</tr>
<tr>
<td>Add. 7999: Data 7999</td>
<td>Data 7999</td>
</tr>
</tbody>
</table>

When pasted on overwrite mode, if the row data of the destination address has not been entered yet, the data in the columns except pasted column is set by default data.

1. Copy data for pasting. (See “Copy Data”.)
2. In case of insert mode, press INS key to transfer to overwrite mode.
3. Select destination cells to paste. (See “Select Cells”.)
4. Click [Edit]-[Paste] or click button. Also you can select [Paste] in the pop up menu by clicking the right button of the mouse.

In case you paste more than two cells, you must specify the destination cells that have the same range of row and column number, or you must specify a single cell.

When pasting, Position Editor checks that the type of the pasting data matches the destination. If data type is mismatched or out of range, the dialog box to confirm is shown.

![Data pasting dialog box]

[Ignore] button clicked, the error cell will not be pasted and next pasting is continued. [All ignore] clicked, the cells in which error is detected subsequently will not be pasted. [Stop] clicked, current pasting is aborted.
5.14. Delete Data

You can delete data of the current selected row in the sheet and the deleted row is filled with vacant data. Deleting has two types as insert mode and overwrite mode according to INS key status. You can check INS key status on the status bar that shows “INS”.

Insert mode

<table>
<thead>
<tr>
<th>INS</th>
</tr>
</thead>
</table>

Overwrite mode

<table>
<thead>
<tr>
<th>INS</th>
</tr>
</thead>
</table>

Deleting on Insert Mode

If you delete data on insert mode, all data below the deleted address is shifted up. And the data at the end (address 7999) of the sheet is filled with vacant data.

Example) Delete address 0000-0002 on insert mode.

<table>
<thead>
<tr>
<th>Before Deleting</th>
<th>After Deleting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add. 0000: Data 0000</td>
<td>Data 0003</td>
</tr>
<tr>
<td>Add. 0001: Data 0001</td>
<td>Data 0004</td>
</tr>
<tr>
<td>Add. 0002: Data 0002</td>
<td>Data 0005</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 0500: Data 0500</td>
<td>Data 0503</td>
</tr>
<tr>
<td>Add. 0501: Data 0501</td>
<td>Data 0504</td>
</tr>
<tr>
<td>Add. 0502: Data 0502</td>
<td>Data 0505</td>
</tr>
<tr>
<td>Add. 0503: Data 0503</td>
<td>Data 0506</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 7997: Data 7997</td>
<td>Vacant data</td>
</tr>
<tr>
<td>Add. 7998: Data 7998</td>
<td>Vacant data</td>
</tr>
<tr>
<td>Add. 7999: Data 7999</td>
<td>Vacant data</td>
</tr>
</tbody>
</table>

1. Select rows to delete. (See “Select Cells”.)

2. In case of overwrite mode, press INS key to transfer to insert mode.

3. Click [Edit]-[Del] or click button. Also you can select [Del] in the pop up menu by clicking the right button of the mouse.
Deleting on Overwrite Mode

If you delete data on overwrite mode, the deleted row is filled with vacant data.

Example) Delete address 0000-0002 on overwrite mode.

<table>
<thead>
<tr>
<th>Before Deleting</th>
<th>After Deleting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add. 0000: Data 0000</td>
<td>Vacant data</td>
</tr>
<tr>
<td>Add. 0001: Data 0001</td>
<td>Vacant data</td>
</tr>
<tr>
<td>Add. 0002: Data 0002</td>
<td>Vacant data</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 0500: Data 0500</td>
<td>Data 0500</td>
</tr>
<tr>
<td>Add. 0501: Data 0501</td>
<td>=> Data 0501</td>
</tr>
<tr>
<td>Add. 0502: Data 0502</td>
<td>Data 0502</td>
</tr>
<tr>
<td>Add. 0503: Data 0503</td>
<td>Data 0503</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Add. 7997: Data 7997</td>
<td>Data 7997</td>
</tr>
<tr>
<td>Add. 7998: Data 7998</td>
<td>Data 7998</td>
</tr>
<tr>
<td>Add. 7999: Data 7999</td>
<td>Data 7999</td>
</tr>
</tbody>
</table>

1. Select rows to delete. (See “Select Cells”.)

2. In case of insert mode, press INS key to transfer to overwrite mode.

3. Click [Edit]-[Del] or click button. Also you can select [Del] in the pop up menu by clicking the right button of the mouse.
5.15. Add, Subtract, Multiply, Divide Position Data

You can add, subtract, multiply or divide the axis value of the position data by specifying the calculating value by selecting [Edit]-[Calculate] in the editing window for the position data.

The operation is as follows.

1. Select the single cell or the cell block to calculate. (See “Select Cells”.)

2. Select the calculation type in [Edit]-[Calculate] of the menu or select it of the pop-up menu shown by clicking the right button of the mouse at the editing window. And then the following window (the calculating window) is shown.

3. The address range of the currently selected cells is shown in [Start Address] and [End Address]. If you want to change the range, input the new address here.

4. Enter the calculating value to [Added Value] (or [Subtracted Value], [Multiplied Value], [Divided Value]). When the calculating window is opened, “0.000” for adding or subtracting or “1.000” for multiplying or dividing is shown as the default calculating value. And when the calculating window is opened, the axes of the selected cells are enabled. If you want to change the calculating axis, click the check box for the axis.

5. Click [OK] button to start the calculation. During the calculation, the cursor becomes an hourglass. When the calculation is finished for all the selected positions, the calculating window is closed automatically.

Note) The rows that have not been entered yet are not calculated.

Restrictions to Input Data

There are the following restrictions to input data to the start address, the end address and the calculating value.

These are checked when [OK] button clicked and if the NG detected, the message is shown. (See “Error Message of Position Editor”.)

- The end address must be bigger than the start address.
- The start address or the end address must be within the range for the selected controller type.
- The expression of the floating value must have the appropriate format.
- In the case of division, you cannot divide the data by zero.
Error for Calculation

If the result of the calculation is out of the range that is permitted for the axis data, the following message is shown.

![PosEdit]

Address 0000 X Axis : Calculated value is out of range. The value cannot be set. Do you want to continue next address ?

[Yes] clicked, the data of the next address will be calculated.
[No] clicked, the calculation will be aborted and return to the calculating window. In this case, the calculating window will show the next address automatically and you can restart to calculate the next address by clicking [OK] button.

Note) Whether you select [Yes] or [No], the calculated values without errors till this message have been set to the cells.
5.16. Rotate Position Data in X-Y Plane

You can calculate data of the rotation of X-Y plane about the Z axis by selecting [Edit]-[Calculate]-[Rotate (X-Y Plane)] in the editing window for the position data.

The operation is as follows.

1. Select the single cell or the cell block to calculate. (See “Select Cells”.) You can select the cells besides X axis or Y axis, because the calculation is executed about the addresses that contain the selected cells.

2. Select [Edit]-[Calculate]-[Rotate (X-Y Plane)] of the menu or select it of the pop-up menu shown by clicking the right button of the mouse at the editing window. And then the following window (the calculating window) is shown.

3. The address range of the currently selected cells is shown in [Start Address] and [End Address]. If you want to change the range, input the new address here.

4. Enter the rotated angle value to [Rotated Angle]. When the calculating window is opened, “0.000” is shown as the default value.

5. If the W axis data is not changed, the W axis direction in the space of coordinates is the same as before the rotation. If you check [Rotate W axis according to this angle] check box, the W axis data is automatically rotated by the same angle that is specified for X-Y rotation. After this operation, for the example, you can fix the W axis direction for the robot posture.
In this figure, suppose that P1 is rotated to P2 by angle A. In the case that W axis data is not changed, the W axis direction of P2 will be \([W]\) that is the same of P1 in the figure. It is because that the robot treats the W axis value as the angle on the basis of the coordinate of the space. If you check [Rotate W axis according to this angle] check box, the W axis value is automatically rotated to the direction \([W]\).

In case of [Rotate W axis according to this angle] checked to ON, as default, \([W+]\) option box is selected automatically and the W axis value is added by the rotated angle value. But this case is available in the case that the plus direction of the rotated angle is the same as the plus direction of W axis of the robot. There is the case that the plus direction of the rotated angle is converse from the plus direction of W axis of the robot. In this case, select \([W-]\) option box.

Note When you rotate X-Y positions with W axis rotation, please confirm the direction of W axis of the using robot. Then specify the correct value of the angle and select \([W+]\) or \([W-]\) appropriately.

6. In [Sample], the lowest address among the selected addresses is selected and the figure of X-Y plane before and after the rotation is shown except the case that the position data is vacant or the case that the values of X and Y axis are zero. If you change the rotated angle, the sample figure is also changed. If you want to change the sample address, enter the new address to [Sample Address] and click [Show Sample].

7. Click [OK] button to start the calculation. During the calculation, the cursor becomes an hourglass. When the calculation is finished for all the selected positions, the calculating window is closed automatically.

Note The rows that have not been entered yet are not calculated.

Restrictions to Input Data

There are the following restrictions to input data to the start address, the end address and the rotated angle.

These are checked when [OK] button clicked and if the NG detected, the message is shown. (See “Error Message of Position Editor”.)

- The end address must be bugger than the start address.
- The start address or the end address must be within the range for the selected controller type.
- The expression of the floating value must have the appropriate format.
Error for Calculation

If the result of the calculation is out of the range that is permitted for the axis data, the following message is shown.

![Error Message]

[Yes] clicked, the data of the next address will be calculated. [No] clicked, the calculation will be aborted and return to the calculating window. In this case, the calculating window will show the next address automatically and you can restart to calculate the next address by clicking [OK] button.

Note) Whether you select [Yes] or [No], the calculated values without errors till this message have been set to the cells.

5.17. Undo, Redo Operation to Edit Position Data

When editing the position data, the following operation can be stored for 16 times maximum.

• Input to the cell from the keyboard
• Cut the data
• Paste the data
• Delete the data
• Calculation to add, subtract, multiply, divide
• Rotation in the X-Y plane

You can undo these operation to click [Undo] in the [Edit] menu and the data is restored to the values before the operation.

After undoing the operation, if you want to execute the operation again, click [Redo] in the [Edit] menu.

When the number of operations is over 16 times, the oldest operation is deleted and the newest operation is stored.
5.18. Excel Reference Definition

You can operate the following function to select [Tool]-[Excel Reference] in the menu for the current active window of the position data.
Note) Active window means that the window has the focus among the opened windows.

- Define Excel reference
- Read from Excel worksheet according to Excel reference definition
- Write to Excel worksheet according to Excel reference definition

These functions cannot be available on the computer in which Excel has not been installed.

You can define the relation between Excel worksheet and the cells of the editor. Select [Tool]-[Excel Reference]-[Excel Reference Definition] to show the following dialog.

In case that you have never set the Excel reference definition for the current active position data, the default definition is shown automatically.

Excel File Name

Specify the file name of Excel worksheet to read or write to [Excel File Name] text box. “Position data file name_pos.xls” is automatically selected as default.

Definition Data

You can see the list of Excel reference definition records in [Definition Data]. The following records are already set as default.
- The Excel cell of row no. 1 and column no.1 is related to the first cell of the title (such as “ADDR”, “X[mm]” and so on).
- The Excel cell of row no. 2 and column no. 1 is related to the first cell of the position data form address 0000 to maximum address.

Delete Definition Data Record

After you have selected the definition record to click the [Excel Row,Col] of the record, you can delete the record to click [Delete] button. If you want to cancel deleting, click [Cancel] button to exit without saving.
Edit Definition Data Record

After you have selected the definition record to click the [Excel Row, Col] of the record, you can edit the record to click [Edit] button. Then, the following dialog is shown.

- **Excel**
 You can specify the starting row number of Excel worksheet to [Starting row]. You must specify the value more than 1.
 You can specify the starting column number of Excel worksheet to [Starting column]. You must specify the value more than 1.

- **Position Data**
 You must select whether normal data or title.
 In case of title, the Excel cells of the row specified by [Starting row] with the starting column number specified by [Starting column] are related sequentially to the title names of items selected in [Item].
 You cannot specify [Starting address] and [Number of rows] in case of title.
 In case of normal data, the Excel cells of a row with the starting column number specified by [Starting column] are related sequentially to the position data of an address.
 The Excel rows are related sequentially to the position data from the address specified by [Starting address]. The number of rows can be specified by [Number of rows].
 The Excel columns are related only to the items selected in [Item].

- **This [Item] setting is applied to all definitions**
 When you have selected [This [Item] setting is applied to all definition] check-box to ON, this selection of items will be applied to all definition records.

Click [OK] button to renew the definition record.

Add Definition Data Record

After you have selected the definition record to click the [Excel Row, Col] of the record, you can add the record to click [Add] button.
Then the editing dialog is shown as the same as described in "Edit Definition Data Record". See "Edit Definition Data Record" about setting of the definition record.
5. Edit Position Data

Read Definition Data

You can read the Excel reference definition of other position data to click [Read] button. After reading other definition, the current definition will be overwritten.

Save Definition Data

The definition data is renewed to click [OK] button in the Excel reference definition dialog. Click [Cancel] button to exit without renewal of the current definition. Saving the definition data to the file is executed at the same time when the position data is saved to the file. The file that saves the Excel reference definition data is the comment information file. See “Save Position Data” about the comment information file.

5.19. Read from or Write to Excel Worksheet

You can write the active position data to Excel worksheet according to the Excel reference definition to select [Tool]-[Excel reference]-[Write to Excel] in the menu. Also you can read the position data from Excel worksheet according to the Excel reference definition to select [Tool]-[Excel reference]-[Read from Excel] in the menu. These functions cannot be available on the computer in which Excel has not been installed.

After selecting [Tool]-[Excel reference]-[Write to Excel] in the menu, the Excel reference definition dialog is shown. Click [OK] button to activate Excel and write the position data to Excel worksheet according to the current displayed Excel reference definition. You can modify the Excel reference definition in this dialog. See “Excel Reference Definition” about editing the Excel reference definition.

The operation of reading from Excel is as the same as writing.

After starting to read or write, the following progress dialog is shown.

![Progress Dialog]

Click [Abort] button to stop reading or writing.

When reading or writing is completed, Excel shows the dialog that asks to save the worksheet. Select action in the dialog. Then [Open Excel] button is enabled, you can open the Excel worksheet to click [Open Excel] button in the progress dialog.
5.20. Print Position Data

You can print position data with the various range as follows.

- Print position data of all addresses.
- Print position data selected currently.
- Print position data with specified address.

1. Click [File]-[Print]. Then the printing dialog box is shown.

2. To print position data of all addresses, click [All] radio button. To print position data selected currently, click [Selected range] radio button. To print position data with specified address, click [Address set] radio button and set [Start Address], [End Address] that you want to print.
 When [Except empty positions] checked to ON, the empty rows are not printed.
 When [Except end points (M=??)] checked to ON, the rows of end point data are not printed.

3. You can select whether the comments for the position data will be printed or not by checking [Print Comment]. If the comments printed, the printing orientation is selected to Landscape as default. If the comments not printed, the printing orientation is selected to Portrait as default. You can change the orientation to click the option button.

4. You can print comment at the upper area (header) or the lower area (footer) of a page to input comment to [Header] or [Footer] box. Multiple line comment is possible to input a return. This comment is printed in all pages. The header and footer will be saved to the file. (See “Save Position Data”.) In the case that you have never edit the position data, after you enter the header or footer, the confirming message of saving the file will be shown when the editing window is terminated.

5. Click [OK] button to start printing. Click [Cancel] button to exit this dialog box.

Also you can print by clicking button in the tool bar.

Note) When printing position data, Position Editor uses the current settings of printer. To change the settings of printer, click [File]-[Printer Setting] or click [Set] button in the printing dialog box before execution of printing.
5. Edit Position Data

5.21. Save Position Data

Save to Overwrite

Click [File]-[Save]. Then the edited position data is saved to overwrite.

Also you can save to overwrite by clicking button in the tool bar.

The overwritten file is saved to the backup file.

Note) In case of position data created newly, the file name setting dialog box is shown. Enter a file name and click [Save] button.

Save as Another Name

1. Click [File]-[Save As]. Then the file name setting dialog box is shown.

2. Enter a saved file name and click [Save] button. Then the edited position data is written to the specified file.

If the same name file exists, this file is saved to the backup file.

Created Files

The files that are created when saving the data are the position data file, the comment information file and the backup file. These files are created at the robot data directory that is specified in [Set Up]-[Project Settings]-[Directory] of Main Menu.

The file names are as follows.

<table>
<thead>
<tr>
<th>Position data file</th>
<th>Specified-Name.pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment information file</td>
<td>Specified-Name.psx</td>
</tr>
<tr>
<td>Backup file</td>
<td>Original-Name_bak.pos</td>
</tr>
</tbody>
</table>
5.22. Save Position Data to Memory Card

You can save the current opened position data to the robot memory card. There are two saving operations as “Save (to overwrite)” and “Save As (another name)”.

Save to Overwrite

Select [File]-[Memory Card]-[Save] in the menu. If you have opened the file saved in the computer, you cannot select this menu. After the confirmation dialog to overwrite is shown, select [Yes] or [No]. In case of [Yes] selected, the current opened data overwrites the memory card file.

Save as Another Name

Select [File]-[Memory Card]-[Save As] in the menu.

1. The following address range dialog is shown.
 After you have selected cells, [Selected Blocks] option is enabled.

![Address Range Dialog](image)

Specify the range of the addresses that you want to save and then click [OK] button.

2. The dialog for the default name of the memory card file is shown.

![Select Default Name for Memory Card](image)

The default file name is used when the robot controller executes “ALL SAVE” or “ALL LOAD” for the memory card. In case of HNC-5XX type controller, the different default file name is used according to the robot number. In this case, you must select the robot number of the target. Click [Yes] button to show the saving dialog with this default file name. Click [No] button to show the saving dialog with the vacant file name.

3. The saving dialog is shown.
 Enter or confirm the file name, and then click [Save] button to save the current opened data to the memory card as the specified file. Only seven numeral characters are allowed as the saving file name.
5.23. Close Editing Window of Position Data
Click [File]-[Close]. Then the position data editing window is closed.
Note) In case you have not saved the edited position data in the editing window yet, the asking dialog to save or not is shown. And in case you have not yet save position data opened from the memory card to the file in the computer though you have not edit at all, the same dialog is shown.

5.24. Exit Editing of Position Data
Click [File]-[Exit]. Then the main window of Position Editor is terminated.
Note) In case you have not saved the edited position data in the editing window yet, the asking window to save or not is shown. And in case you have not yet save position data opened from the memory card to the file in the computer though you have not edit at all, the same dialog is shown.
5.25. Error Messages of Position Editor

File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot open file.</td>
<td>The file cannot be opened. Check the attribution of the file in the property. When the other process has already opened the file, terminate the process.</td>
</tr>
<tr>
<td>Controller type invalid.</td>
<td>First line in the Position/S.G./S.P data file is invalid controller type.</td>
</tr>
<tr>
<td>File data is illegal.</td>
<td>When reading data file, illegal data format is found.</td>
</tr>
<tr>
<td>(Addr:AddrNo [Data]) Ignore</td>
<td>[Ignore] clicked, the error is ignored to continue reading.</td>
</tr>
<tr>
<td>error to continue ?</td>
<td>[All ignore] clicked, the all subsequent errors are ignored to continue reading.</td>
</tr>
<tr>
<td>Cannot save file.</td>
<td>The file cannot be saved. It may be caused by disk space exhausted. Delete useless files or change the save drive and retry saving.</td>
</tr>
</tbody>
</table>

Data Input Error Message

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot paste, out of range.</td>
<td>When pasting, the number of data copied in the clipboard is not the same as the number of cells selected as the destination for pasting. Select the destination to paste again.</td>
</tr>
<tr>
<td>Cannot paste, bad data in clipboard.</td>
<td>When pasting, invalid data is found in the clipboard. Copy the valid data to the clipboard.</td>
</tr>
<tr>
<td>Copy data type is mismatched to pasting cell.</td>
<td>When pasting 'Val' to 'AddrNo', 'ColName' cell, data cannot be paste since data type is mismatched or out of range. [Ignore] clicked, the error cell is not pasted. [All ignore] clicked, the cells in which error is detected subsequently will not be pasted.</td>
</tr>
<tr>
<td>(ADDR) AddrNo [COLUMN] ColName [VALUE] Val</td>
<td>Position address is out of range. Enter the value of address from 0000 to 7999.</td>
</tr>
<tr>
<td>In such case, ignore pasting ?</td>
<td>Start/End address is out of range.</td>
</tr>
<tr>
<td>Start address is bigger than end address.</td>
<td>Start address of position is bigger than end address. Enter the start address less than the end address.</td>
</tr>
</tbody>
</table>
Calculation Error Message

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/End address not specified.</td>
<td>Enter the start address or the end address.</td>
</tr>
<tr>
<td>Value not specified.</td>
<td>Enter the calculating value.</td>
</tr>
<tr>
<td>Angle not specified.</td>
<td>Enter the rotated angle.</td>
</tr>
<tr>
<td>Start/End address is out of range.</td>
<td>The start address or the end address is out of the range according to the controller type. Specify the value within the range.</td>
</tr>
<tr>
<td>Start address is bigger than end address.</td>
<td>Start address of position is bigger than end address. Enter the start address less than the end address.</td>
</tr>
<tr>
<td>Bad floating expression.</td>
<td>Enter the correct expression for the floating value. Correct Example: -10.002 0.003 123 -123</td>
</tr>
<tr>
<td>Bad floating expression of angle.</td>
<td>Enter the correct expression for the floating value. Correct Example: -10.002 0.003 123 -123</td>
</tr>
<tr>
<td>Cannot specify zero to divide.</td>
<td>Specify the value except zero to divide.</td>
</tr>
<tr>
<td>Calculated value is out of range. The value cannot be set.</td>
<td>The result of the calculation is out of the range for the stroke. Undo to calculate again or enter the correct value.</td>
</tr>
<tr>
<td>Angle is out of range.</td>
<td>Specify the rotated angle from -180 to 180 degree.</td>
</tr>
<tr>
<td>Sample address is out of range.</td>
<td>The sample address is out of the range according to the controller type. Specify the value within the range.</td>
</tr>
<tr>
<td>Sample address is not between start address and end address. Is it sure to show the sample?</td>
<td>The sample address is not between the specified start address and the end address. Click [Yes] to show the sample for this address.</td>
</tr>
</tbody>
</table>
6. Edit Robot Settings Data

6.1. Introduction to Robot Settings Data Editor

You can use Robot Settings Data Editor (S.G. Editor, S.P. Editor, Configuration Editor, Servo Parameter Editor, Expanded Parameter Editor) to show and edit the robot settings data (S.G. data, S.P. data, configuration, servo parameter, expanded parameter) uploaded from a robot. And you can create a new robot settings data file by Robot Settings Data Editor.

If the computer has the PC card slot, you can read data saved in the memory card or write data to the memory card.

Note 1) The robot memory card does not support configuration data.

You have to start an different type editor for robot settings data according to the data type you want to edit.

You can operate the editor of all types similarly.

When editing, Robot Settings Data Editor uses the definition file in which the data structure is defined. (See “Definition File for Robot Settings Data”.)

S.G. Editor starts by following operation.
(1) Select [S.G. Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[S.G. Data] in Main Menu of HR Editor.
(3) Select button in Main Menu of HR Editor.

S.P. Editor starts by following operation.
(1) Select [S.P. Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[S.P. Data] in Main Menu of HR Editor.
(3) Select button in Main Menu of HR Editor.

Configuration Editor starts by following operation.
(1) Select [Configuration Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[Configuration] in Main Menu of HR Editor.
(3) Select button in Main Menu of HR Editor.

Servo Parameter Editor starts by following operation.
(1) Select [Servo Parameter Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[Servo Parameter] in Main Menu of HR Editor.
(3) Select button in Main Menu of HR Editor.

Expanded Parameter Editor starts by following operation.
(1) Select [Expanded Parameter Editor] of [HR-Editor x.x] group in the start menu of Windows.
(2) Select [File]-[Expanded Parameter] in Main Menu of HR Editor.
(3) Select button in Main Menu of HR Editor.

Note 2) Configuration, servo parameter and expanded parameter are supported only for HNC-5XX (max. 6 axes) type controller.
Note 3) Servo Parameter Editor can support memory data of HNC-1XX,2XX,3XX,544.
Table of Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Access Type</th>
<th>HNC-1XX, 2XX, 3XX, 544</th>
<th>HNC-5XX</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.G. Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>S.G. Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>S.G. Editor</td>
</tr>
<tr>
<td>S.P. Data</td>
<td>Communication</td>
<td>OK</td>
<td>OK</td>
<td>S.P. Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK</td>
<td>OK</td>
<td>S.P. Editor</td>
</tr>
<tr>
<td>Configuration</td>
<td>Communication</td>
<td>----</td>
<td>OK</td>
<td>Configuration Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>----</td>
<td>NG *2</td>
<td>Configuration Editor</td>
</tr>
<tr>
<td>Servo Parameter</td>
<td>Communication</td>
<td>OK *1</td>
<td>OK</td>
<td>Servo Parameter Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>OK *1</td>
<td>OK</td>
<td>Servo Parameter Editor</td>
</tr>
<tr>
<td>Expanded Parameter</td>
<td>Communication</td>
<td>----</td>
<td>OK</td>
<td>Expanded Parameter Editor</td>
</tr>
<tr>
<td></td>
<td>Memory Card</td>
<td>----</td>
<td>OK</td>
<td>Expanded Parameter Editor</td>
</tr>
</tbody>
</table>

OK: Robot holds this data and HR Editor can access it.
----: Robot does not hold this data.
NG: Robot holds this data but HR Editor can not access it.

*1) HR Editor treats servo parameter of HNC-1XX,2XX,3XX,544 as “Memory Data”.
*2) Robot controller has no function to read or write to the memory card for this data.

Function Structure of Robot Settings Data Editor
6.2. Start Editing of Robot Settings Data

You can start Robot Settings Data Editor by one of the following operations.
1. Select [File]-[Data-Type] in Main Menu of HR Editor. Then you must select to open a new file or an existing file. In case of opening an existing file, specify the file to open.
2. Select [Data-Type Editor] of [HR-Editor x.x] group in the start menu of Windows.
3. Select a each data file by Windows Explore and double-click it.

Subsequent explanation uses S.G data for example.
Note) After installing of HR Editor, first starting of Robot Settings Data Editor must be selected by Main Menu of HR Editor.

When Robot Settings Data Editor starting, a new editing window opens for the specified controller type defined in parameter file ‘harl.dat’. (See “Parameter File ‘harl.dat’.”)
About creating a new file for the other controller type, see “Create New System Data File”.
When starting, a child window of Robot Settings Editor is maximized.
6. Edit Robot Settings Data

6.3. View of Robot Settings Data Editor

You can open more than two windows to edit robot settings data in the main window. And you can arrange editing windows or icons by the [Window] menu.

The tree view of robot settings data groups is shown at the left side of the editing window. And the robot settings data list of the group selected in the tree view is shown at the right side. You can set each data in the data list. See “Show and Select Group of Robot Settings Data” about operation of the tree view. And see “Input Robot Settings Data” about operation of the data list.

You can change the size of the tree view and the data list to drag the bar between the tree view and the data list.

After dragging the bar to left as follows.

Status Bar in The Editing Window

The following information is shown in the status bar (the bar at the lowest area of the window) in the editing window for the each robot settings data file.

- Controller type
- Stroke type
- Group name selected currently
- Item name of the group at the active cell
- Column name of the active cell
6.4. Stroke Type Setting

You can set the default stroke type applied to editing by selecting [Tool]-[Option]-[Stroke Setting] in the menu.

Note: See "Operating Environment" about stroke types.

The stroke type selected here will be used as the default value of the stroke checking dialog opened when the following operation is executed:

1. Create a new data file.
2. Open the existing data file.
3. Open the data file saved in memory card.

To select [Without stroke checking dialog when file opened] check-box to ON, the stroke checking dialog will not be shown when (1)-(3) is operated and the stroke type selected here will be applied to editing.

In case of S.G./S.P. Data Editor, if you set the wrong stroke type that differs from the type of actual data, there will be the following result.

In case of Configuration Editor, Servo Parameter Editor or Expanded Parameter Editor, HR Editor does not refer to the stroke type although you can set the stroke type.

1. After creating new position file.
 You cannot enter the floating value (the value with the decimal point) out of the stroke limit.

 If there is a floating value out of the stroke limit in the opened file, it is able to read but you cannot edit this value.
 And you cannot enter the new floating value out of the limit of the stroke.

3. After opening position file saved in memory card.

 HNC-1XX, 2XX, 3XX, 544
 (4 axes)
 If there is a floating value out of the stroke limit in the opened file, it is able to read but you cannot edit this value.
 And you cannot enter the new floating value out of the limit of the stroke.

 HNC-5XX
 (6 axes)
 The decimal point is shifted. The displayed value of an floating data is x10, x100, x1000 or 1/10, 1/100, 1/1000 from the actual data.
 And you cannot enter the new floating value out of the limit of the stroke.
6.5. Create New Robot Settings Data File

Click [File]-[New HNC-xxx] according to the controller type to create the new data file. Then an editing window for the new data is opened in the main window.

Also you can open the new editing window to click the button such as ＋.

Note) A new file for HNC-1XX,2XX,3XX,544 cannot be created in Configuration Editor or Expanded Parameter Editor

Stroke Checking Dialog

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the following stroke checking dialog is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.

![Stroke Checking Dialog]

Select the stroke type for the file to create.

To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.

If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.

Note) In case of Configuration Editor, Servo Parameter Editor or Expanded Parameter Editor, HR Editor does not refer to the stroke type although you can set the stroke type.
6.6. Open Robot Settings Data File

1. Click [File]-[Open] to show the file selection dialog box.
2. Select the file in the list view to open and click [Open] button. Then the editing window for the specified file is opened.

Also you can open the editing window for the existing file to click button.

The list of recent opened files is shown at the lower area of [File] menu. Click the file name of this list to open the file.

Note) Extension of each type file name is as follows.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.G. data</td>
<td>.sg</td>
</tr>
<tr>
<td>S.P. data</td>
<td>.sp</td>
</tr>
<tr>
<td>Configuration</td>
<td>.cfg</td>
</tr>
<tr>
<td>Servo parameter</td>
<td>HNC-1XX,2XX,3XX,544: .mem HNC-5XX: .svo</td>
</tr>
<tr>
<td>Expanded parameter</td>
<td>.epr</td>
</tr>
</tbody>
</table>

Stroke Checking Dialog

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the following stroke checking dialog is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.

Select the stroke type for the file to open.

To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.

If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.

Note) In case of Configuration Editor, Servo Parameter Editor or Expanded Parameter Editor, HR Editor does not refer to the stroke type although you can set the stroke type.
6. Edit Robot Settings Data

6.7. Open Robot Settings Data File Saved in Memory Card

Note) Because a robot controller cannot save configuration data to a memory card, you cannot use this function for Configuration Editor.

1. Insert the memory card to a memory card slot of the computer.
 In case of “New hardware detection” from Windows, install the memory card driver by the operation described at “Install Memory Card Driver”.

2. Select [File]-[Memory Card]-[Open] in the menu to show the file selection dialog for the memory card.
 Select the file to open in the list and click [Open] button.
 There is the case that the following message is shown just after you have inserted the memory card to the card slot.

In this case, click [OK] button and then click [Cancel] button in the file selection dialog. Wait for few seconds and select [File]-[Memory Card]-[Open] in the menu again.

In case that this message is shown several times and you cannot access the memory card, confirm the hardware name of the memory card. If the hardware name is correct, terminate HR Editor and other application program and then reboot the computer to let the memory card in the card slot. If the hardware name is wrong, change memory card driver of Windows. (See “Install Memory Card Driver”.)

If you select the file that the editor cannot read, the error message is shown and the file cannot be opened.

3. After showing the robot type dialog, HR Editor reads the specified file to show the editing window.

Memory Card Removal

You can remove the memory card from the computer unless HR Editor is currently accessing the memory card.
 The access to memory card means that
 • the file selection dialog for the memory card is shown.
 • HR Editor reads or writes the memory card file.
 Concerning safety, it is recommended that you remove the memory card after HR Editor is terminated.

Note) After operating as follows, a Windows fatal exception error occurs on some type computer. In this case, you have to reset the computer. And you must not operate as follows, but you can remove the memory card directly. Although [Unexpected PC Card Removal] message is shown, there is no problem for the memory card unless HR Editor is currently accessing the memory card.
(1) Click the card icon in the task tray of Windows.
(2) After [Stop HNC SRAM Memory Card] menu is shown, click to select it.
(3) After [You may safely remove this device.] message is shown, click [OK] button.
(4) Remove the memory card from the card slot.

Robot Type Dialog

After selecting the file saved in the memory card, the following robot type dialog is shown.

![Robot Type Dialog](image)

The information of the specified file is shown in [File Information].
And the robot controller type decided by this information is shown.
You need not change the displayed controller type ordinarily.

If [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu is selected to OFF, the stroke type checking message is shown. The initial displayed type is the stroke that has been selected in [Tool]-[Option]-[Stroke Setting] of the menu.
Select the stroke type for the file to open.
To select [Do not show stroke checking dialog in the future] check-box to ON, this dialog will be never shown when the opening or creating position file. And the default stroke type set in [Tool]-[Option]-[Stroke Setting] will be applied automatically.
If you want to show this dialog again, select [Without stroke checking dialog when file opened] check-box in [Tool]-[Option]-[Stroke Setting] of the menu to OFF.

See “Stroke Type Setting” about other explanation.

Note) In case of Servo Parameter Editor or Expanded Parameter Editor, HR Editor does not refer to the stroke type although you can set the stroke type.
6.8. Show and Select Group of Robot Settings Data

The tree view of robot settings data groups is shown at the left side of the editing window. Robot settings data groups have two levels. After the robot settings editing window shown, only first level is shown as nodes in the tree view.

When a first level node is expanded, the icon of a first level node is shown as , but when it is not expanded, it is shown as . If is double-clicked, the first level node is expanded and the second level nodes is shown.

If is double-clicked, the second level is closed. The second level node is clicked, the data list of the selected group is shown in the right side of the editing window.

When the second level node is double-clicked, you can input the data in the data list. See “Input Robot Settings Data” about data input.
6.9. Input Robot Settings Data

You can input robot settings data in the data list at the right side of the robot settings editing window. Select a cell for data input and input data to the cell. In case there is the range definition of the value, you must input a value within the range.

Key functions are as follows.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor Up or RETURN</td>
<td>Activate a upper cell.</td>
</tr>
<tr>
<td>Cursor Down</td>
<td>Activate a lower cell.</td>
</tr>
<tr>
<td>ESC</td>
<td>Undo the value of an active cell.</td>
</tr>
<tr>
<td>BS</td>
<td>Delete a character before cursor.</td>
</tr>
<tr>
<td>DEL</td>
<td>Delete a character after cursor.</td>
</tr>
</tbody>
</table>

In case of some kind of data, you must select an item in the list. Click the combo box to show the list and click an item of the list to select the data.

Input Comment

You can to input any string to the cell of the comment column. You can enter 50 characters maximum for the comment.

Change Width of Column

You can change the width of a column to drag the bar between columns.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>LIMIT</th>
<th>DIM</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS Max</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, dragging the bar between ‘DATANAME’ and ‘LIMIT’ to left.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>LIMIT</th>
<th>DIM</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS Max</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.10. Undo, Redo Operation to Edit Robot Settings Data

When editing the robot settings data, the following operation can be stored as a cell operation up to 64 times maximum.

- Input to the cell from the keyboard
- Cut the data
- Paste the data

You can undo these operations to click [Undo] in the [Edit] menu and the data is restored to the values before the operation.
After undoing the operation, if you want to execute the operation again, click [Redo] in the [Edit] menu.
When the number of operations is over 64 times as a cell operation, the oldest operation is deleted and the newest operation is stored.
6.11. Excel Reference Definition

You can operate the following function to select [Tool]-[Excel Reference] in the menu for the current active window of the position data.

Note) Active window means that the window has the focus among the opened windows.

- Define Excel reference
- Read from Excel worksheet according to Excel reference definition
- Write to Excel worksheet according to Excel reference definition

These functions cannot be available on the computer in which Excel has not been installed.

You can define the relation between Excel worksheet and the cells of the editor. Select [Tool]-[Excel Reference]-[Excel Reference Definition] to show the following dialog.

You can define the reference for Excel.

In case that you have never set the Excel reference definition for the current active position data, the default definition is shown automatically.

Excel File Name

Specify the file name of Excel worksheet to read or write to [Excel File Name] text box. The following file name for each data type is automatically selected as default.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Default Worksheet File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.G. data</td>
<td>S.G. data file name_sg.xls</td>
</tr>
<tr>
<td>S.P. data</td>
<td>S.P. data file name_sp.xls</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configuration file name_cfg.xls</td>
</tr>
<tr>
<td>Servo parameter</td>
<td>Servo parameter or memory data file name_svo.xls</td>
</tr>
<tr>
<td>Expanded parameter</td>
<td>Expanded parameter file name_epr.xls</td>
</tr>
</tbody>
</table>

Definition Data

You can see the list of Excel reference definition records in [Definition Data]. The following records are already set as default.

- One Excel row is related to one item of robot settings data.
- One row for the data group name is added to the head of data group rows of Excel.
- One row for the item title (such as “Data Name”, “Limit” or “Dim”) is added after the next row of data group name.
Delete Definition Data Record

After you have selected the definition record to click the [Excel Row,Col] of the record, you can delete the record to click [Delete] button. If you want to cancel deleting, click [Cancel] button to exit without saving.

Edit Definition Data Record

After you have selected the definition record to click the [Excel Row,Col] of the record, you can edit the record to click [Edit] button. Then, the following dialog is shown.

- **Excel**
 You can specify the starting row number of Excel worksheet to [Starting row]. You must specify the value more than 1.
 You can specify the starting column number of Excel worksheet to [Starting column]. You must specify the value more than 1.
 To select [With group name at first row] check-box to ON, the data group name such as “[LIMIT ADDRESS MAX]” is added to the first of the group rows.
 To select [With title for columns] check-box to ON, the column title such as “Data Name”, “Limit” is added to the next of the group name row.

- **Each Data**
 Select the data group in [Group] list-box that you want to relate to a row and a column specified at [Excel].
 The Excel columns with the starting column number specified by [Starting column] are related sequentially to the items only selected in [Item].
 The Excel rows are related sequentially to the items of the data group specified in [Group] from the row with the number specified in [Starting row] or from [Starting row] + max. 2 rows (one row added by selecting [With group name at first row] or [With title for columns] to ON).

- **This [Item] setting is applied to all definitions**
 When you have selected [This [Item] setting is applied to all definition] check-box to ON, this selection of items will be applied to all definition records.

Click [OK] button to renew the definition record.
Add Definition Data Record

After you have selected the definition record to click the [Excel Row,Col] of the record, you can add the record to click [Add] button. Then the editing dialog is shown as the same as described in “Edit Definition Data Record”. See “Edit Definition Data Record” about setting of the definition record.

Read Definition Data

You can read the Excel reference definition of other robot settings data to click [Read] button. After reading other definition, the current definition will be overwritten.

Save Definition Data

The definition data is renewed to click [OK] button in the Excel reference definition dialog. Click [Cancel] button to exit without renewal of the current definition. Saving the definition data to the file is executed at the same time when the robot settings data is saved to the file. The file that saves the Excel reference definition data is the comment information file. See “Save Robot Settings Data” about the comment information file.
6. Edit Robot Settings Data

6.12. Read from or Write to Excel Worksheet

You can write the active robot settings data to Excel worksheet according to the Excel reference definition to select [Tool]-[Excel reference]-[Write to Excel] in the menu. Also you can read the robot settings data from Excel worksheet according to the Excel reference definition to select [Tool]-[Excel reference]-[Read from Excel] in the menu. These functions cannot be available on the computer in which Excel has not been installed.

After selecting [Tool]-[Excel reference]-[Write to Excel] in the menu, the Excel reference definition dialog is shown. Click [OK] button to activate Excel and write the robot settings data to Excel worksheet according to the current displayed Excel reference definition. You can modify the Excel reference definition in this dialog. See “Excel Reference Definition” about editing the Excel reference definition.

The operation of reading from Excel is as the same as writing.

After starting to read or write, the following progress dialog is shown.

![Progress Dialog](image)

Click [Abort] button to stop reading or writing.

When reading or writing is completed, Excel shows the dialog that asks to save the worksheet. Select action in the dialog. Then [Open Excel] button is enabled, you can open the Excel worksheet to click [Open Excel] button in the progress dialog.
6.13. Check Configuration

Configuration Editor can check the propriety of the configuration data. Select [Tools]-[Check Configuration] in the menu to check the propriety of the current active configuration data.

If the checking result falls under one of the following conditions, HR Editor decides that the configuration data is invalid.

1. Null data (there is a vacant item.)
2. Motor configuration checking
 (1) Revolution number of a used motor is less than zero.
 (2) Pulse number of a used motor is less than zero.
 (3) Lead length of a used motor is less than zero.
 (4) Motor code of a used motor is less than zero.
3. Robot configuration checking
 (1) Max. position of a used robot is zero.
 (2) Max. position of a used robot is over 4000.
 (3) Max. position of a used robot is not multiple of 1000.
 (4) Motor number of a used robot is more than 16.
 (5) A motor of a used robot is already used in other axis.
 (6) A motor of a used robot is already used in other robot.
 (7) A motor of a used robot is not registered in motor configuration.
 (8) Acceleration value of a used robot is zero.
 (9) Motor is not assigned at all for a used robot.
 (10) Sum of max. position is over 8000.

If the error is detected, the message that includes data group name, data item name and explanation is shown as follows.

Configuration Editor checks the propriety automatically when the data saving. In case that the error is detected, the data cannot be saved showing the message. This is the same when you terminate Configuration Editor after you have changed the data.
6.14. Print Robot Settings Data

You can print all groups or a currently selected group of robot settings data.

1. Click [File]-[Print]. Then the printing dialog box is shown.

![Printing Dialog Box]

2. To print all groups, click [All] radio button. To print a currently selected group, click [Selected group] radio button.

3. You can select whether the comments for the robot settings data will be printed or not by checking [Print Comment]. If the comments printed, the printing orientation is selected to Landscape as default. If the comments not printed, the printing orientation is selected to Portrait as default. You can change the orientation to click the option button.

4. You can print comment at the upper area (header) or the lower area (footer) of a page to input comment to [Header] or [Footer] box. Multiple line comment is possible to input a return. This comment is printed in all pages. The header and footer will be saved to the file. (See “Save Robot Settings Data”.) In the case that you have never edit the robot settings data, after you enter the header or footer, the confirming message of saving the file will be shown when the editing window is terminated.

5. Click [OK] button to start printing. Click [Cancel] button to exit this dialog box.

Also you can print by clicking button in the tool bar.

Note) When printing robot settings data, Robot Settings Data Editor uses the current settings of printer. To change the settings of printer, click [File]-[Printer Setting] or click [Set] button in the printing dialog box before execution of printing.
6.15. Save Robot Settings Data

Save to Overwrite
Click [File]-[Save]. Then the edited robot settings data is saved to overwrite.

Also you can save to overwrite by clicking button in the tool bar.
The overwritten file is saved to the backup file.

Note) In case of robot settings data created newly, the file name setting dialog box is shown.
Enter a file name and click [Save] button.

Save as Another Name
1. Click [File]-[Save As]. Then the file name setting dialog box is shown.
2. Enter a saved file name and click [Save] button. Then the edited robot settings data is written to the specified file.

If the same name file exists, this file is saved to the backup file.

Created Files
The files that are created when saving the data are the robot settings data file, the comment information file and the backup file. These files are created at the robot data directory that is specified in [Set Up]-[Project Settings]-[Directory] of Main Menu. The file names are as follows.

• S.G. data
 S.G. data file Specified-Name.sg
 Comment information file Specified-Name.sgx
 Backup file Original-Name_bak.sg

• S.P. data
 S.P. data file Specified-Name.sp
 Comment information file Specified-Name.spx
 Backup file Original-Name_bak.sp

• Configuration
 Configuration file Specified-Name.cfg
 Comment information file Specified-Name.cfx
 Backup file Original-Name_bak.cfg

• Servo parameter
 Servo parameter file Specified-Name.svo
 Comment information file Specified-Name.svx
 Backup file Original-Name_bak.svo

• HNC-1XX,2XX,3XX,544 memory data
 Servo parameter file Specified-Name.mem
 Comment information file Specified-Name.mex
 Backup file Original-Name_bak.mem

• Expanded parameter
 Expanded parameter file Specified-Name.epr
 Comment information file Specified-Name.epx
 Backup file Original-Name_bak.epr

Automatic Configuration Checking
In case of Configuration Editor, the propriety of current configuration data is checked automatically before saving the data.
6.16. Save Robot Settings Data to Memory Card

You can save the current opened robot settings data to the robot memory card. There are two saving operation as “Save (to overwrite)” and “Save As (another name)”.

Save to Overwrite

Select [File]-[Memory Card]-[Save] in the menu.
If you have opened the file saved in the computer, you cannot select this menu.
After the confirmation dialog to overwrite is shown, select [Yes] or [No].
In case of [Yes] selected, the current opened data overwrites the memory card file.

Save as Another Name

Select [File]-[Memory Card]-[Save As] in the menu.

1. The dialog for the default name of the memory card file is shown.

![Select Default Name for Memory Card](image)

The default file name is used when the robot controller executes “ALL SAVE” or “ALL LOAD” for the memory card.
In case of HNC-5XX type controller, the different default file name is used according to the robot number. In this case, you must select the robot number of the target.
Click [Yes] button to show the saving dialog with this default file name.
Click [No] button to show the saving dialog with the vacant file name.

2. The saving dialog is shown.

Enter or confirm the file name, and then click [Save] button to save the current opened data to the memory card as the specified file.
Only seven numeral characters are allowed as the saving file name.

Pairing Data When Saving S.G./S.P. Data

S.G. data and S.P. data is managed as one file in the memory card.
Therefore, you need to specify the pairing data when you want to save S.G. data or S.P. data to the memory card.
Before the execution of saving S.G. data or S.P. data, the following dialog is shown.
In case of overwriting the file in the memory card, [Overwrite only S.G./S.P. data in the memory card] option is enabled. In case that the specified file is absent in the memory card, [Overwrite only S.G./S.P. data in the memory card] option is disabled and you cannot select it.

- Overwrite only S.G./S.P. data in the memory card
 Only S.G. data or S.P. data currently opened is saved to the memory card file. The pairing data in the memory card file is not overwritten.

- Overwrite S.G./S.P. data too by using the saved file in the computer
 After reading the pairing data file saved in the computer, the current opened data and the pairing data is save to the memory card file. If the file extension or the controller type described in the file is invalid, the error message is shown and you cannot save data.

Therefore, it is necessary that the pairing file must exists in the computer when you want to save data as the file name that is absent in the memory card.

6.17. Close Editing of Robot Settings Data
Click [File]-[Close]. Then the robot settings data editing window is closed.
Note) In case you have not saved the edited robot settings data in the editing window yet, the confirming window to save or not is shown. And in case you have not yet save the data opened from the memory card to the file in the computer though you have not edit at all, the same dialog is shown.

6.18. Exit Editing of Robot Settings Data
Click [File]-[Exit]. Then the main window of Robot Settings Editor is terminated.
Note) In case you have not saved the edited robot settings data in the editing window yet, the confirming window to save or not is shown. And in case you have not yet save the data opened from the memory card to the file in the computer though you have not edit at all, the same dialog is shown.
6.19. Error Messages of Robot Settings Data Editor

Definition File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot open data definition file. [File Name]</td>
<td>The data definition file cannot be opened. Check the attribution of the file in the property. When the other process has already opened the file, terminate the process. In case of the data definition file not found, this error occurs.</td>
</tr>
<tr>
<td>Description in data definition file is illegal. [File Name]</td>
<td>Description in the data definition file is illegal. See “Definition File for Robot Settings Data” and correct description.</td>
</tr>
</tbody>
</table>

Data File Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot open file. [File Name]</td>
<td>The file cannot be opened. Check the attribution of the file in the property. When the other process has already opened the file, terminate the process.</td>
</tr>
<tr>
<td>Controller type invalid. [File Name]</td>
<td>First line in the data file is invalid controller type.</td>
</tr>
<tr>
<td>Group name is undefined. [Group Name]</td>
<td>A group name undefined in the data definition file is found in the data file.</td>
</tr>
</tbody>
</table>
| File data is illegal. [Group Name, Data Value] | There is an inconsistency between the data file and the data definition file. The probable causes are as follows.
 • Data type is different.
 • Data length is different.
 • Data range is different. |
| Data is Null. [Group Name, Data Name] | If there is a vacant data, the file cannot be saved. Input data and retry saving. |
| Cannot save file. [File Name] | The file cannot be saved. It may be caused by disk space exhausted. Delete useless files or change the save drive and retry saving. |
Configuration Checking Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data is null.</td>
<td>A data item is vacant. Enter some value to the item.</td>
</tr>
<tr>
<td>Specified value is invalid.</td>
<td>Specified value is less than zero. Enter the value over zero.</td>
</tr>
<tr>
<td>Specified position max. is invalid.</td>
<td>Specified max. position in robot configuration is less than zero. Enter the value over zero.</td>
</tr>
<tr>
<td>Specified position max. is not multiple of 1000.</td>
<td>Enter max. position in robot configuration by multiple of 1000 such as 1000, 2000 ...</td>
</tr>
<tr>
<td>Specified position max. is out of range.</td>
<td>Max. position in robot configuration is over 4000. Enter the value less than 4000.</td>
</tr>
<tr>
<td>Specified motor no. is out of range.</td>
<td>Enter the value from 1 to 16 to the motor number in robot configuration.</td>
</tr>
<tr>
<td>Specified motor no. is used for other axis.</td>
<td>The motor number specified in robot configuration is used for the other axis in the same robot. Enter another motor number.</td>
</tr>
<tr>
<td>Specified motor no. is used in other robot.</td>
<td>The motor number specified in robot configuration is used for the other robot. Enter another motor number.</td>
</tr>
<tr>
<td>Specified motor no. is not registered in motor configuration.</td>
<td>Register the specified motor to motor configuration.</td>
</tr>
<tr>
<td>Accel/decel value is not specified.</td>
<td>Acceleration and deceleration value is zero. Enter the value over zero.</td>
</tr>
<tr>
<td>Motor is not assigned at all for robot.</td>
<td>Motor is not assigned at all in robot configuration. Assign a motor at least to a axis in robot configuration.</td>
</tr>
<tr>
<td>Sum of position max. is overflow.</td>
<td>Enter max. position value as the sum of all used robot positions is less than 8000.</td>
</tr>
</tbody>
</table>
6.20. Definition File for Robot Settings Data

What Is Definition File?
Structure and attributes of Robot Settings Data (S.G. Data, S.P. Data, configuration, servo parameter and expanded parameter) have variety according to the type of the robot controller. Robot Settings Data Editor uses the data definition file that defines the structure of data and the attributions of data item. By means of this file, Robot Settings Data Editor can treat the various type of the robot controller. So, if you want to treat Robot Settings Data of a robot controller, a data definition file corresponded to the robot controller must be existing.

Definition File Name
A data definition file must exist at the directory where HR Editor system has installed. After HR Editor installed, there are following files at the installed directory.

Definition file for System Generation(S.G.) Data --- “xxxx.dag”
a) HNC-1XX,2XX,3XX,544 (max. 4 axes) ---- “variable.dag”
b) HNC-5XX (max. 6 axes): Standard, With URL ---- “vari_6.dag”
c) HNC-5XX (max. 6 axes): For semiconductor ---- “vari_6_semicon.dag”

Definition file for System Parameter (S.P.) Data --- “xxxx.dap”
a) HNC-1XX,2XX,3XX,544 (max. 4 axes) ---- “variable.dap”
b) HNC-5XX (max. 6 axes) ---- “vari_6.dap”

Definition file for Configuration --- “xxxx.dac”
a) HNC-5XX (max. 6 axes) ---- “vari_6.dac”

Definition file for Servo Parameter --- “xxxx.das”
a) HNC-5XX (max. 6 axes) ---- “vari_6.das”

Definition file for HNC-1XX,2XX,3XX,544 Memory Data --- “xxxx.dam”
a) A-CAL DISTANCE ---- “variable_1.dam”
b) A-CAL DISTANCE + EPI ---- “variable_2.dam”
c) A-CAL DISTANCE + Servo Parameter ---- “variable_3.dam”
d) A-CAL DISTANCE + EPI + Servo Parameter ---- “variable_4.dam”

Definition file for Expanded Parameter --- “xxxx.dae”
a) HNC-5XX (max. 6 axes) ---- “vari_6.dae”

Structure of Definition File

```
Group Name
Data
.
.
.
Group Name
Data
.
.
.
```
Format

1. Group Name

 Group Name is described as the path of two levels. Level name is separated by a back slash (\). Group Name is put in brackets ([]).

 Example) [ORIGIN\SET-UP SYSTEM]

2. Data

 Data is described by the following format.

 Relative Memory Address, Data Name, Data Type, Unit, Range or Selection [@FIX]

 Example) Short=0,"ADDRESS MAX",3I,0:9999
 Long=0,"UPPER A",7F3|6F3|7F2|8F2,"mm"
 Long=1,"LOWER A",7F3|6F3|7F2|8F2,"mm",0:
 Short=91,"STOP SEL",S,"STATUS" | "RISING"

< Relative Memory Address >

This parameter is only used in S.G. data or S.G. data definition. This parameter defines the relative memory address form the top of the S.G./S.P. data area in the robot memory. This definition is used when HR Editor access the memory card. A robot maintains S.G./S.P. data in the 4 bytes long word area and the 2 bytes short word area. In case of long word data, specify the relative memory address of long word area as the following format.

 Long=Relative Address (>=0)

 In case of short word data, specify the relative memory address of short word area as the following format.

 Short=Relative Address (>=0)

< Data Name >

Data Name is put in double quotations (" "). Data Name can be described by max. 18 characters. (Except double quotations) Data Name cannot be omitted.

< Data Type >

Data Types can be specified as integer, float or character type. Each of types has the following format.

In case of integer, Data Type is described as “nI”. “n” is the number of digits and max. 8 digits is allowed. “n” can be omitted. When “n” omitted, you can input -99999999 to 99999999 into the cell of a S.G./S.P. editing window. But if the range explained later is defined, this range is preferred.

Example) 1I, 3I

In case of float, Data Type is described as “nFm”. “n” is the number of full digits (except a sign and a decimal point) and max. 7 digits is allowed. “m” is the number of digits of decimal fraction and must not be over the number of full digits. “n” or “m” can be omitted. When “n”, ”m” are omitted, you can input -99999999.99 to 99999999.99 into the cell of a S.G./S.P. editing window. If the range explained later is defined, this range is preferred.

Example) 6F2, 4F1

In case of float, if the precision is different by stroke type, specify the definitions for each stroke type as the following format.

 Standard | Short | Long | Super Long

 Example) 7F3|6F3|7F2|8F2

Note) In case of HNC-5XX, if the definition is not for each stroke type, the decimal point of data value may be different from the actual value after reading from the memory card.

In case of character, Data Type is described as “S”.

Data Type cannot be omitted.

< Unit >
Unit is put in double quotations (" "). Unit can be described by max. 8 characters.
(except double quotations) If the data does not have a unit, Unit can be omitted.

< Range or Selection >
Range or Selection is described to display and check the range of data or to select the
values in the editing window. If the data does not have a range or strings to select,
Range can be omitted.

In case of the range, Range or Selection is described as “Value1:Value2”. “Value1” is the
minimum value of the data and “Value2” is the maximum value of the data. If the data
has only one limit, “Value1” or “Value2” can be omitted. “Value1” or “Value2” is
ordinarily numerical, but it can be described as string in order to only display the limit
in the S.G./S.P. editing window without checking the range. (max. 8 characters)
Example) 0:100 "Range of 0 to 100
5: "Range of more than 5
0: "Z STROKE" "Range of more than 0 ("Z STROKE" is displayed only)

In case of the selection, Range or Selection is described as “Value1|Value2|....”. “Value”
can be specified as many as needed. “Value” can be numerical or characters but
cannot be omitted.
Example) 0|100 'Select 0 or 1
"HOLD"|"NOT HOLD" 'Select "HOLD" or "NOT HOLD"
"1200"|"2400"|"4800"|"9600" 'Select "1200","2400","4800" or "9600"

Note) For all robot types, in case of strings, the defined order of strings must be the
sequence of the numerical values that the robot maintains in the software
running in the controller. If the defined order of strings does not correspond to the
sequence of the values, the different value will be send to the memory card or the
robot.

< @FIX >
You can omit this command. It needs to put a space or a tab character in front of this
command. This command forbids an editor application to change data. An editor
application display the data cell with yellow color and you cannot enter this data.

3. Comment
Comments begin with the character “ ’ ” (single quotation).

4. Description for Example
Description of “variable.dag” file

[LIMIT\ADDRESS MAX]
Short=0,"ADDRESS MAX",3I,0:999

[LIMIT\AREA LIMIT]
Long=0,"UPPER LMT X(A)",7F3|6F3|7F2|8F2,"mm"
Long=1,"LOWER LMT X(A)",7F3|6F3|7F2|8F2,"mm"

[MAINTEN\EXPANSION A]
Long=8,"CPC GAIN Z",7I
Long=9,"CPC GAIN W",7I

[MAINTEN\EXPANSION B]
Long=12,"INITIAL W",6F3
Long=13,"LENGTH W",6F3
[MAINTE¥MAINTENANCE DATA]
 Short=1,"CPC SELECT",3I
 Short=2,"CPC LOOP TIME",3I

[ORIGIN¥SET-UP SYSTEM]
 Short=5,"TRANSFER RATE",S,"bps","300"|"600"|"1200"|"2400"|"4800"|"9600"|"19200"|"38400"
 Short=6,"ONLINE SELECT",1I,0:9

[ORIGIN¥AXIS DIRECTION]
 Long=81,"A-CAL SEQ.",6I
 Short=8,"A-CAL DIR. A(X)",S,="PLUS"|"MINUS"

[ORIGIN¥AXIS SELECT]
 Short=87,"A(X) AXIS TYPE",S,="NOT USED"|"USED"
 Short=88,"A(X) AXIS SEL",S,="NOT HOLD"|"HOLD"

[ADJUST¥AR TYPE ADJUST]
 Long=16,"INITIAL A",7F3|6F3|7F2|8F2,"deg"
 Long=17,"INITIAL B1",7F3|6F3|7F2|8F2,"deg"

[ADJUST¥MB TYPE ADJUST]
 Long=18,"Y INITIAL",7F3|6F3|7F2|8F2,"deg"
 Short=23,"MB COMBINATION",1I,0:3

[CAPABILITY¥ROBOT CAPABILITY]
 Long=82,"ENC. PULSE A",7I
 Long=83,"ENC. PULSE B",7I

[CAPABILITY¥EXPANSION A]
 Long=86,"EXPANSION 0",6I
 Long=87,"EXPANSION 1",6I
7. Trouble Shooting When Uploading or Downloading

7.1. Trouble Shooting When Uploading or Downloading

There are three levels of error when HR Editor uploading or downloading communicated with the robot.

1. Data file invalid

When starting to upload or download, HR Editor checks that the specified data file is valid or not. The following error message will be shown when the data file is invalid.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot save file.</td>
<td>The file cannot be saved. It may be caused by disk space exhausted. Delete useless files or change the save drive and retry uploading.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position data of start address not found.</td>
<td>When downloading position data, the data of the specified start address cannot be found in the position data file. Enter the correct start address that exists in the file.</td>
</tr>
<tr>
<td>Position data not found.</td>
<td>For example, though the specified range of position data is 0100 to 0200 for downloading, address 0000 to 0150 data has been found in the file. In this case, this message is shown and downloading 0100 to 0150 data is completed successfully.</td>
</tr>
<tr>
<td>Controller type invalid.</td>
<td>The First line in the data file is invalid controller type. It may be that the file is destroyed. The first line must be one of the following texts. “VARIABLE”, “VARI_6”, “VARI_6,NOUN”</td>
</tr>
</tbody>
</table>

2. Communication trouble with the robot

HR Editor checks that the ability of the RS232C communication with the robot. If HR Editor cannot communicate with the robot, the following message will be shown.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving time out</td>
<td>• The communication settings of the project do not correspond with the robot or STC. Check the settings of the communication speed, data length, stop bits, parity and the STC or robot number. Note1) The RS232C settings when the robot at the shipment. Data length: 7 bit (fixed) Stop bits: 1 bit (fixed) Parity: Even (fixed) HNC-1XX,2XX,3XX,544 transfer rate: 9600 bps HNC-5XX transfer rate: 19200 bps</td>
</tr>
</tbody>
</table>

Note1) The RS232C settings when the robot at the shipment. Data length: 7 bit (fixed) Stop bits: 1 bit (fixed) Parity: Even (fixed) HNC-1XX,2XX,3XX,544 transfer rate: 9600 bps HNC-5XX transfer rate: 19200 bps
7. Trouble Shooting When Uploading or Downloading

See “[Set Up]-[Project Settings]-[RS232C Port]”. You can see the transfer rate of the robot to operate as follows by the teaching pendant showing [ORIGIN]-[SET-UP SYSTEM]-[TRANSFER RATE].

(1) Press [FUNC/HIGH]+[s.g/7] key.
(2) Press [mot/3] key.
(3) Press [cal/1] key.

It needs power OFF/ON to activate the new setting of the transfer rate changed by the teaching pendant.

Note2) Controller type and robot number
You must specify the robot number in case of HNC-5XX.
In case of standard HNC-1XX,2XX,3XX,544, you must not specify the robot number to select [Without robot no.].
But there is a special type HNC-1XX,2XX,3XX,544 that needs the robot number.

See “[Set Up]-[Project Settings]-[COM Format]”.

Note3) To use the robot number, you must specify the value set in the robot that you can show at [MAINTENANCE]-[MAINTENANCE DATA]-[STATION NO.] by the teaching pendant.

(1) Press [FUNC/HIGH]+[s.g/7] key.
(2) Press [task/2] key.
(3) Press [mot/3] key.
(4) Press several times [up/DOWN] key.

• The cable is disconnected.
 Check the connection of the cable or the wiring of the cable.
 See “Connection with Robot Controller” about the wiring of the cable.

<Rare Case>

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRC error when receiving</td>
<td>There is a possibility of the noise. Remove the source of the noise or shield the cable.</td>
</tr>
<tr>
<td>NAK received</td>
<td></td>
</tr>
<tr>
<td>Parity error when receiving</td>
<td></td>
</tr>
<tr>
<td>Receiving frame error</td>
<td>The environment of the communication of Windows system is not be tuned adequately.</td>
</tr>
<tr>
<td></td>
<td>Change the communication setting of Windows system. (See “Change Communication Setting of Windows System”.)</td>
</tr>
<tr>
<td>Overrun when receiving</td>
<td>There is a possibility of the noise. Remove the source of the noise or shield the cable.</td>
</tr>
<tr>
<td>Sending buffer full</td>
<td></td>
</tr>
<tr>
<td>Receiving buffer overrun</td>
<td>The environment of the communication of Windows system is not be tuned adequately.</td>
</tr>
<tr>
<td></td>
<td>Change the communication setting of Windows system. (See “Change Communication Setting of Windows System”.)</td>
</tr>
<tr>
<td>Break status</td>
<td>The computer hardware is troubled. Use an another computer.</td>
</tr>
</tbody>
</table>
7. Trouble Shooting When Uploading or Downloading

- There is a possibility that the cable is broken.
 Check the wiring of the cable.

- General I/O error
 - The computer hardware is troubled.
 Use an another computer.

- Sending time out
 - The cable is disconnected.
 Check the connection of the cable or the wiring of the cable.

3. Error response from the robot

Although the communication with the robot is good, if the robot has been under error status or the robot cannot respond with the command by some reason, the robot sends the error response. After HR Editor receives the error response, it breaks uploading or downloading to show the error message.

The following robot status is recommended when uploading or downloading robot data.

- **Without moving (Key-In mode the best)**

Some type of robots cannot be downloaded or uploaded when an error occurs such as emergency stop, servo error or overrun.

The robot errors are listed as follows.

<table>
<thead>
<tr>
<th>Error Code(HEX)</th>
<th>Error Message</th>
<th>Explanation and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Emergency stop</td>
<td>Remove the cause of the emergency stop.</td>
</tr>
<tr>
<td>30</td>
<td>Address out of limit</td>
<td>Specified address of position data exceeds the range set in the robot controller. The message will be shown and invalid addresses will be neglected.</td>
</tr>
<tr>
<td>40</td>
<td>Position data out of area limit</td>
<td>Change the area limit of the system data of the robot by teach-pendant. Or check and renew the position data. Note) Some type of SCARA robot sends this error when the zero axis value have been downloaded. See “Download from Computer to Robot” about this.</td>
</tr>
<tr>
<td>51</td>
<td>Overrun of robot</td>
<td>Move the robot inside the area limited by the overrun sensor. And check teaching of the robot.</td>
</tr>
<tr>
<td>63</td>
<td>System data (SG, SP) destroyed</td>
<td>Some reason causes that the data memory of the robot has been destroyed. You must execute DEFAULY COPY by Teaching Pendant. See “How to Recover from System Data Destroyed”.</td>
</tr>
<tr>
<td>64</td>
<td>Position data destroyed</td>
<td>Some reason causes that the data memory of the robot has been destroyed. You must execute initialization of positions by Teaching Pendant. See “How to Recover from Position Data Destroyed”.</td>
</tr>
</tbody>
</table>
7. Trouble Shooting When Uploading or Downloading

70 Servo error
The trouble of the servo motor. The encoder pulse changes without moving. Or the encoder pulse cannot change with moving. Check the encoder line, the motor line or the servo driver. Refer to the user’s guide of the controller.

A0 Servo driver error
The robot detects the trouble of the servo driver. Check the servo driver. Refer to the user’s guide of the controller.

60 Communication format error
(1) When uploading, there is a possibility that some positions in the robot controller have not been initialized. Refer to “Upload from Robot to Computer”.
(2) In case of communication with HNC-1XX,2XX,3XX,544 type, specified address of position data exceeds the range set in the robot controller.

61 Communication command error
Confirm the robot controller type to communicate and the HR Editor setting of the robot controller type. The possible reasons as follows.
(1) Communicating with a standard HNC-1XX,2XX,3XX,544 with the robot number set in HR Editor.
(2) Reading the robot version from HNC-1XX,2XX,3XX,544.
(3) Uploading or downloading the data that HNC-1XX,2XX,3XX,544 can not treat.

<Rare Case>
Refer to the operation manual of the robot or user’s guide of the controller about the following errors.
09h:Positioning error
11h:Dead man switch ON
20h:A-CAL incomplete
31h:M data error
32h:Sensor not found
33h:Spline error
34h:EPI retry error
62h:Illegal command
65h:Online communication data error
66h:Watch dog timer time out
80h:Command duplicated
90h:Impossible error
91h:Overflow
92h:Underflow
93h:Over speed
94h:M number error
95h:X-Y conversion error
96h:Positioning error
99h:Start motion error
B0h:Encoder disconnected
7.2. Change Communication Setting of Windows System

When communicated with STC or robot, in the case of the following errors occurred, the communication reliability may be improved to change the communication setting of the Windows system.

- Receiving frame error
- Overrun when receiving
- Sending buffer full
- Receiving buffer overrun

You can change the communication setting of the Windows system as follows.

1. Open [Settings]-[Control Panel] in the start menu of Windows and open [System] in [Control Panel].

2. Click [Device Manager] tab to select.

3. Double-click [Ports (COM & LPT)] in the tree view to expand the node showing the devices.

4. Click the [Communication Port] (normally COM1 or COM2) that is used for HR Editor.

5. After selecting COM, click [Properties] button displayed at the lower part of the current window to open [Communication Port Properties] window for the selected COM.

6. Click [Port Settings] tab. The settings of bits per second, data bits, etc. are shown in this window but you must leave these settings as it was. Then click [Advanced] button.

7. After the window of the advanced port settings for the port is opened, set the performance for the receive buffer and the transmit buffer to the lowest level. And then click [OK] button.
7.3. How to Recover from System Data Destroyed

In case that the robot is under the situation “System data (SG, SP) destroyed”, the following status occurs.

- You can see “SYSTEM DATA ERROR” on the teaching pendant.
- When HR editor uploads or downloads the data, the message “System data (SG, SP) destroyed” is shown.

You can recover the system data in the robot by downloading the HR Editor saved data in the computer to operate as follows.

Note) If you recover by the memory card, you must insert the memory card to the robot controller and operate “ALL LOAD” by the teaching pendant. Refer robot operation manual about details.

The following operation must be executed after you have confirmed surely that the robot is now under the situation of system data destroyed and the saved data is correct for the robot. After the following operation, the system data of the robot will be overwritten by the save data. If the save data is not correct, the robot cannot run properly.

1. You must execute DEFAULT COPY by Teaching Pendant of the robot.
 (1) Press [SHIFT] key to turn the SHIFT lamp ON.
 (2) Press [FUNC/HIGH] + [READ] key to show [OK?] message. (*+” means the simultaneous key operation.)
 (3) Press [ENTER] key.

2. Then you must set the using of the axes by Teaching Pendant.
 (1) Press [FUNC/HIGH] + [s.g/7] key to show the data group menu.
 (2) Press [mot/3] to select [ORIGINE] group. And then sub-group menu is shown.
 (4) Set the unused axis to “NOT USED”. You can move the cursor using [up/down] key and select “USED” or “NOT USED” to press [io/SEL] key. After selection, press [ENTER] key twice.

3. Power OFF and ON of the robot controller.

4. Download S.G/S.P data to the robot by HR Editor.

5. Power OFF and ON of the robot controller again.
7.4. How to Recover from Position Data Destroyed

In case that the robot is under the situation “Position data destroyed”, the following status occurs.

- You may see “??????” as the value of axis data on the teaching pendant. Although the numerical value is displayed, there is a possibility that the position data is destroyed. Confirm the current position data to compare with the saved data.
- When HR editor uploads or downloads the data, the message “Position data destroyed” is shown.

You can recover the position data in the robot by downloading the HR Editor saved data in the computer to operate as follows.

Note) If you recover by the memory card, you must insert the memory card to the robot controller and operate “ALL LOAD” by the teaching pendant. Refer robot operation manual about details.

The following operation must be executed after you have confirmed surely that the robot is now under the situation of position data destroyed and the saved data is correct for the robot. After the following operation, the position data of the robot will be overwritten by the save data. If the save data is not correct, the robot cannot run properly.

1. You must execute initialization of positions by Teaching Pendant of the robot.
 (1) Press [FUNC/HIGH] + [s.ed/4] (or [p.ed/5]) key to show “POSITION COMMAND”.
 (2) Set “000” to “START ADDRESS”. And press [ENTER] key twice.
 (You can move the cursor using [up/down] key.)
 (3) Set “999” to “END ADDRESS”. And press [ENTER] key twice.
 (4) Set “000” to “SET ADDRESS”. And press [ENTER] key twice.
 (5) Select [INIT] mode by pressing [io/SEL] key several times.

2. Download position data to the robot by HR Editor.

3. Power OFF and ON of the robot controller.